2 research outputs found

    Validation and application of a thermal-optical reflectance (TOR) method for measuring black carbon in loess sediments

    No full text
    In an effort to assess the potential contamination and determine the environmental risks associated with heavy metals, the surface sediments in Liaodong Bay, northeast China, were systematically sampled and analyzed for the concentrations of Cu, Pb, Zn, Cr, Ni, As, and Hg. The metal enrichment factor (EF) and geoaccumulation index (I (geo)) were calculated to assess the anthropogenic contamination in the region. Results showed that heavy metal concentrations in the sediments generally met the criteria of China Marine Sediment Quality (GB18668-2002); however, both EF and I (geo) values suggested the elevation of Pb concentration in the region. Based on the effect-range classification (TEL-PEL SQGs), Cu, Pb, Ni, and As were likely to pose environment risks, and the toxic units decreased in the order: Ni &gt; Pb &gt; Cr &gt; Zn &gt; As &gt; Cu &gt; Hg. The spatial distribution of ecotoxicological index (mean-ERM-quotient) suggested that most of the surface sediments were &quot;low-medium&quot; priority zone. Multivariate analysis indicated that the sources of Cr, Ni, Zn, Cu, and Hg resulted primarily from parent rocks, and Pb or As were mainly attributed to anthropogenic sources. The results of this study would provide a useful aid for sustainable marine management in the region.</p

    Spatial distributions and sequestrations of organic carbon and black carbon in soils from the Chinese loess plateau

    No full text
    Concentrations of soil organic carbon (SOC), black carbon (BC), char, and soot in topsoils (0-20 cm) and vertical soil profiles (0-100 cm) from the Chinese Loess Plateau (CLP) were investigated. Objectives of the study were to establish the spatial distributions and estimate the sequestrations of these substances. The SOC, BC, char and soot concentrations were higher in the eastern and southeastern parts of the plateau and lower in the north, which is consistent with the patterns of economic development and energy consumption. The highest average SOC concentration was found in the clayey loess zone, followed by the loess and sandy loess zones. Similar trends were observed for BC, char and soot, suggesting interactions with clay and silt are potentially important influences on DC and BC. The SOC contents in topsoils varied from 0.31 to 51.81 g kg(-1), with a mean value of 6.54 g kg(-1), while BC and char concentrations were 0.02 to 5.5 g kg(-1) and 0.003 to 4.19 g kg(-1), respectively, and soot ranged from 0.01 to 132 g kg(-1). Unlike SOC, both BC and char decreased with soil depth, whereas soot showed little variation with depth. BC and char were correlated in the topsoils, and both correlated moderately well with SOC (R-2=0.60) and soot (R-2= 0.53). The SOC pools sequestered in the 0 to 20 cm and 0 to 100 cm depths were estimated to be 0.741 and 3.63 Pg, respectively, and the BC pools sequestered in the 0 to 20 cm and 0 to 100 cm depths were 0.073 and 0.456 Pg, respectively. Therefore the quantity of carbon stored in the sediments of the CLP evidently exceeds 10(9) tons. The char contained in the upper 20 cm layer was 0.053 Pg, which amounted to 72.5% of the BC in that layer.</p
    corecore