2,352 research outputs found

    Alternative mechanism of avoiding the big rip or little rip for a scalar phantom field

    Get PDF
    Depending on the choice of its potential, the scalar phantom field ϕ\phi (the equation of state parameter w<−1w<-1) leads to various catastrophic fates of the universe including big rip, little rip and other future singularity. For example, big rip results from the evolution of the phantom field with an exponential potential and little rip stems from a quadratic potential in general relativity (GR). By choosing the same potential as in GR, we suggest a new mechanism to avoid these unexpected fates (big and little rip) in the inverse-\textit{R} gravity. As a pedagogical illustration, we give an exact solution where phantom field leads to a power-law evolution of the scale factor in an exponential type potential. We also find the sufficient condition for a universe in which the equation of state parameter crosses w=−1w=-1 divide. The phantom field with different potentials, including quadratic, cubic, quantic, exponential and logarithmic potentials are studied via numerical calculation in the inverse-\textit{R} gravity with R2R^{2} correction. The singularity is avoidable under all these potentials. Hence, we conclude that the avoidance of big or little rip is hardly dependent on special potential.Comment: 9 pages,6 figure

    Three-Dimensional MHD Simulation of Caltech Plasma Jet Experiment: First Results

    Get PDF
    Magnetic fields are believed to play an essential role in astrophysical jets with observations suggesting the presence of helical magnetic fields. Here, we present three-dimensional (3D) ideal MHD simulationsof the Caltech plasma jet experiment using a magnetic tower scenario as the baseline model. Magnetic fields consist of an initially localized dipole-like poloidal component and a toroidal component that is continuously being injected into the domain. This flux injection mimics the poloidal currents driven by the anode-cathode voltage drop in the experiment. The injected toroidal field stretches the poloidal fields to large distances, while forming a collimated jet along with several other key features. Detailed comparisons between 3D MHD simulations and experimental measurements provide a comprehensive description of the interplay among magnetic force, pressure and flow effects. In particular, we delineate both the jet structure and the transition process that converts the injected magnetic energy to other forms. With suitably chosen parameters that are derived from experiments, the jet in the simulation agrees quantitatively with the experimental jet in terms of magnetic/kinetic/inertial energy, total poloidal current, voltage, jet radius, and jet propagation velocity. Specifically, the jet velocity in the simulation is proportional to the poloidal current divided by the square root of the jet density, in agreement with both the experiment and analytical theory. This work provides a new and quantitative method for relating experiments, numerical simulations and astrophysical observation, and demonstrates the possibility of using terrestrial laboratory experiments to study astrophysical jets.Comment: accepted by ApJ 37 pages, 15 figures, 2 table

    Solar system tests for realistic f(T)f(T) models with nonminimal torsion-matter coupling

    Full text link
    In the previous paper, we have constructed two f(T)f(T) models with nonminimal torsion-matter coupling extension, which are successful in describing the evolution history of the Universe including the radiation-dominated era, the matter-dominated era, and the present accelerating expansion. Meantime, the significant advantage of these models is that they could avoid the cosmological constant problem of Λ\LambdaCDM. However, the nonminimal coupling between matter and torsion will affect the tests of Solar system. In this paper, we study the effects of Solar system in these models, including the gravitation redshift, geodetic effect and perihelion preccesion. We find that Model I can pass all three of the Solar system tests. For Model II, the parameter is constrained by the measure of the perihelion precession of Mercury.Comment: 10 page

    Casimir pistons with hybrid boundary conditions

    Full text link
    The Casimir effect giving rise to an attractive or repulsive force between the configuration boundaries that confine the massless scalar field is reexamined for one to three-dimensional pistons in this paper. Especially, we consider Casimir pistons with hybrid boundary conditions, where the boundary condition on the piston is Neumann and those on other surfaces are Dirichlet. We show that the Casimir force on the piston is always repulsive, in contrast with the same problem where the boundary conditions are Dirichlet on all surfaces.Comment: 8 pages, 4 figures,references added, minor typos correcte
    • …
    corecore