9 research outputs found

    Bioactive Monoterpenes and Polyketides from the Ascidian-Derived Fungus Diaporthe sp. SYSU-MS4722

    No full text
    There has been a tremendous increase in the rate of new terpenoids from marine-derived fungi being discovered, while new monoterpenes were rarely isolated from marine-derived fungi in the past two decades. Three new monoterpenes, diaporterpenes A–C (1–3), and one new α-pyrones, diaporpyrone A (6), along with nine known polyketides 4, 5, and 7–13 were isolated from the ascidian-derived fungus Diaporthe sp. SYSU-MS4722. Their planar structures were elucidated based on extensive spectroscopic analyses (1D and 2D NMR and HR-ESIMS). The absolute configurations of 1 and 3 were identified by an X-ray crystallographic diffraction experiment using Cu-Ka radiation, and those of compound 2 were assigned by calculating NMR chemical shifts and ECD spectra. It afforded an example of natural epimers with different physical properties, especially crystallization, due to the difference in intermolecular hydrogen bonding. Compounds 9, 10, and 13 showed moderate total antioxidant capacity (0.82 of 9; 0.70 of 10; 0.48 of 13) with Trolox (total antioxidant capacity: 1.0) as a positive control, and compounds 5 and 7 showed anti-inflammatory activity with IC50 values of 35.4 and 40.8 µM, respectively (positive control indomethacin: IC50 = 35.8 µM)

    Bioactive Monoterpenes and Polyketides from the Ascidian-Derived Fungus <i>Diaporthe</i> sp. SYSU-MS4722

    No full text
    There has been a tremendous increase in the rate of new terpenoids from marine-derived fungi being discovered, while new monoterpenes were rarely isolated from marine-derived fungi in the past two decades. Three new monoterpenes, diaporterpenes A–C (1–3), and one new α-pyrones, diaporpyrone A (6), along with nine known polyketides 4, 5, and 7–13 were isolated from the ascidian-derived fungus Diaporthe sp. SYSU-MS4722. Their planar structures were elucidated based on extensive spectroscopic analyses (1D and 2D NMR and HR-ESIMS). The absolute configurations of 1 and 3 were identified by an X-ray crystallographic diffraction experiment using Cu-Ka radiation, and those of compound 2 were assigned by calculating NMR chemical shifts and ECD spectra. It afforded an example of natural epimers with different physical properties, especially crystallization, due to the difference in intermolecular hydrogen bonding. Compounds 9, 10, and 13 showed moderate total antioxidant capacity (0.82 of 9; 0.70 of 10; 0.48 of 13) with Trolox (total antioxidant capacity: 1.0) as a positive control, and compounds 5 and 7 showed anti-inflammatory activity with IC50 values of 35.4 and 40.8 µM, respectively (positive control indomethacin: IC50 = 35.8 µM)

    Insights into azalomycin F assembly-line contribute to evolution-guided polyketide synthase engineering and identification of intermodular recognition.

    No full text
    Modular polyketide synthase (PKS) is an ingenious core machine that catalyzes abundant polyketides in nature. Exploring interactions among modules in PKS is very important for understanding the overall biosynthetic process and for engineering PKS assembly-lines. Here, we show that intermodular recognition between the enoylreductase domain ER1/2 inside module 1/2 and the ketosynthase domain KS3 inside module 3 is required for the cross-module enoylreduction in azalomycin F (AZL) biosynthesis. We also show that KS4 of module 4 acts as a gatekeeper facilitating cross-module enoylreduction. Additionally, evidence is provided that module 3 and module 6 in the AZL PKS are evolutionarily homologous, which makes evolution-oriented PKS engineering possible. These results reveal intermodular recognition, furthering understanding of the mechanism of the PKS assembly-line, thus providing different insights into PKS engineering. This also reveals that gene duplication/conversion and subsequent combinations may be a neofunctionalization process in modular PKS assembly-lines, hence providing a different case for supporting the investigation of modular PKS evolution
    corecore