1,231 research outputs found

    Theory of Neutron Scattering in the Normal and Superconducting State of YBCO

    Full text link
    We analyze neutron experiments on \ybco at various stoichiometries in the superconducting state, within the context of a bi-layer theory which yields good agreement with the normal state Cu-NMR and neutron data as a function of \omega, q and T. A d-wave superconducting state exhibits peaks at q = ( \pi , \pi , \pi ) and sharp maxima as a function of \omega, at twice the gap frequency. This behavior may have been observed experimentally. The counterpart behavior for other choices of order parameter symmetry is discussed.Comment: uuencoded postscript file for the entire paper enclose

    Neutron scattering and superconducting order parameter in YBa2Cu3O7

    Full text link
    We discuss the origin of the neutron scattering peak at 41 meV observed in YBa2_2Cu3_3O7_7 below TcT_c. The peak may occur due to spin-flip electron excitations across the superconducting gap which are enhanced by the antiferromagnetic interaction between Cu spins. In this picture, the experiment is most naturally explained if the superconducting order parameter has ss-wave symmetry and opposite signs in the bonding and antibonding electron bands formed within a Cu2_2O4_4 bilayer.Comment: In this version, only few minor corrections and the update of references were done in order to make perfect correspondence with the published version. RevTeX, psfig, 5 pages, and 3 figure

    The cosmic ray proton plus helium energy spectrum measured by the ARGO-YBJ experiment in the energy range 3-300 TeV

    Get PDF
    The ARGO-YBJ experiment is a full-coverage air shower detector located at the Yangbajing Cosmic Ray Observatory (Tibet, People's Republic of China, 4300 m a.s.l.). The high altitude, combined with the full-coverage technique, allows the detection of extensive air showers in a wide energy range and offer the possibility of measuring the cosmic ray proton plus helium spectrum down to the TeV region, where direct balloon/space-borne measurements are available. The detector has been in stable data taking in its full configuration from November 2007 to February 2013. In this paper the measurement of the cosmic ray proton plus helium energy spectrum is presented in the region 3-300 TeV by analyzing the full collected data sample. The resulting spectral index is γ=−2.64±0.01\gamma = -2.64 \pm 0.01. These results demonstrate the possibility of performing an accurate measurement of the spectrum of light elements with a ground based air shower detector.Comment: 18 pages, 8 figures, preprint submitted to Phys. Rev.

    Study of the diffuse gamma-ray emission from the Galactic plane with ARGO-YBJ

    Get PDF
    The events recorded by ARGO-YBJ in more than five years of data collection have been analyzed to determine the diffuse gamma-ray emission in the Galactic plane at Galactic longitudes 25{\deg} < l < 100{\deg} and Galactic latitudes . The energy range covered by this analysis, from ~350 GeV to ~2 TeV, allows the connection of the region explored by Fermi with the multi-TeV measurements carried out by Milagro. Our analysis has been focused on two selected regions of the Galactic plane, i.e., 40{\deg} < l < 100{\deg} and 65{\deg} < l < 85{\deg} (the Cygnus region), where Milagro observed an excess with respect to the predictions of current models. Great care has been taken in order to mask the most intense gamma-ray sources, including the TeV counterpart of the Cygnus cocoon recently identified by ARGO-YBJ, and to remove residual contributions. The ARGO-YBJ results do not show any excess at sub-TeV energies corresponding to the excess found by Milagro, and are consistent with the predictions of the Fermi model for the diffuse Galactic emission. From the measured energy distribution we derive spectral indices and the differential flux at 1 TeV of the diffuse gamma-ray emission in the sky regions investigated.Comment: 11 pages, 6 figures, published in AP

    4.5 years multi-wavelength observations of Mrk 421 during the ARGO-YBJ and Fermi common operation time

    Get PDF
    We report on the extensive multi-wavelength observations of the blazar Markarian 421 (Mrk 421) covering radio to gamma-rays, during the 4.5 year period of ARGO-YBJ and Fermi common operation time, from August 2008 to February 2013. In particular, thanks to the ARGO-YBJ and Fermi data, the whole energy range from 100 MeV to 10 TeV is covered without any gap. In the observation period, Mrk 421 showed both low and high activity states at all wavebands. The correlations among flux variations in different wavebands were analyzed. Seven large flares, including five X-ray flares and two GeV gamma-ray flares with variable durations (3-58 days), and one X-ray outburst phase were identified and used to investigate the variation of the spectral energy distribution with respect to a relative quiescent phase. During the outburst phase and the seven flaring episodes, the peak energy in X-rays is observed to increase from sub-keV to few keV. The TeV gamma-ray flux increases up to 0.9-7.2 times the flux of the Crab Nebula. The behavior of GeV gamma-rays is found to vary depending on the flare, a feature that leads us to classify flares into three groups according to the GeV flux variation. Finally, the one-zone synchrotron self-Compton model was adopted to describe the emission spectra. Two out of three groups can be satisfactorily described using injected electrons with a power-law spectral index around 2.2, as expected from relativistic diffuse shock acceleration, whereas the remaining group requires a harder injected spectrum. The underlying physical mechanisms responsible for different groups may be related to the acceleration process or to the environment properties.Comment: 17 pages, 9 figures, 5 tables, Accepted for publication in ApJ

    The Dynamical Cluster Approximation: Non-Local Dynamics of Correlated Electron Systems

    Get PDF
    We recently introduced the dynamical cluster approximation(DCA), a new technique that includes short-ranged dynamical correlations in addition to the local dynamics of the dynamical mean field approximation while preserving causality. The technique is based on an iterative self-consistency scheme on a finite size periodic cluster. The dynamical mean field approximation (exact result) is obtained by taking the cluster to a single site (the thermodynamic limit). Here, we provide details of our method, explicitly show that it is causal, systematic, Φ\Phi-derivable, and that it becomes conserving as the cluster size increases. We demonstrate the DCA by applying it to a Quantum Monte Carlo and Exact Enumeration study of the two-dimensional Falicov-Kimball model. The resulting spectral functions preserve causality, and the spectra and the CDW transition temperature converge quickly and systematically to the thermodynamic limit as the cluster size increases.Comment: 19 pages, 13 postscript figures, revte

    Observation of TeV gamma rays from the Cygnus region with the ARGO-YBJ experiment

    Get PDF
    We report the observation of TeV gamma-rays from the Cygnus region using the ARGO-YBJ data collected from 2007 November to 2011 August. Several TeV sources are located in this region including the two bright extended MGRO J2019+37 and MGRO J2031+41. According to the Milagro data set, at 20 TeV MGRO J2019+37 is the most significant source apart from the Crab Nebula. No signal from MGRO J2019+37 is detected by the ARGO-YBJ experiment, and the derived flux upper limits at 90% confidence level for all the events above 600 GeV with medium energy of 3 TeV are lower than the Milagro flux, implying that the source might be variable and hard to be identified as a pulsar wind nebula. The only statistically significant (6.4 standard deviations) gamma-ray signal is found from MGRO J2031+41, with a flux consistent with the measurement by Milagro.Comment: 14 pages, 4 figure

    Magnetic and pair correlations of the Hubbard model with next-nearest-neighbor hopping

    Full text link
    A combination of analytical approaches and quantum Monte Carlo simulations is used to study both magnetic and pairing correlations for a version of the Hubbard model that includes second-neighbor hopping t′=−0.35tt^{\prime }=-0.35t as a model for high-temperature superconductors. Magnetic properties are analyzed using the Two-Particle Self-Consistent approach. The maximum in magnetic susceptibility as a function of doping appears both at finite % t^{\prime } and at t′=0t^{\prime }=0 but for two totally different physical reasons. When t′=0t^{\prime }=0, it is induced by antiferromagnetic correlations while at t′=−0.35tt^{\prime }=-0.35t it is a band structure effect amplified by interactions. Finally, pairing fluctuations are compared with % T -matrix results to disentangle the effects of van Hove singularity and of nesting on superconducting correlations. The addition of antiferromagnetic fluctuations increases slightly the dd-wave superconducting correlations despite the presence of a van Hove singularity which tends to decrease them in the repulsive model. Some aspects of the phase diagram and some subtleties of finite-size scaling in Monte Carlo simulations, such as inverted finite-size dependence, are also discussed.Comment: Revtex, 8 pages + 15 uuencoded postcript figure

    Observation of TeV gamma-rays from the unidentified source HESS J1841-055 with the ARGO-YBJ experiment

    Get PDF
    We report the observation of a very high energy \gamma-ray source, whose position is coincident with HESS J1841-055. This source has been observed for 4.5 years by the ARGO-YBJ experiment from November 2007 to July 2012. Its emission is detected with a statistical significance of 5.3 standard deviations. Parameterizing the source shape with a two-dimensional Gaussian function we estimate an extension \sigma=(0.40(+0.32,-0.22}) degree, consistent with the HESS measurement. The observed energy spectrum is dN/dE =(9.0-+1.6) x 10^{-13}(E/5 TeV)^{-2.32-+0.23} photons cm^{-2} s^{-1} TeV^{-1}, in the energy range 0.9-50 TeV. The integral \gamma-ray flux above 1 TeV is 1.3-+0.4 Crab units, which is 3.2-+1.0 times the flux derived by HESS. The differences in the flux determination between HESS and ARGO-YBJ, and possible counterparts at other wavelengths are discussed.Comment: 17 pages, 4 figures, have been accepted for publication in Ap

    EAS age determination from the study of the lateral distribution of charged particles near the shower axis with the ARGO-YBJ experiment

    Get PDF
    The ARGO-YBJ experiment, a full coverage extensive air shower (EAS) detector located at high altitude (4300 m a.s.l.) in Tibet, China, has smoothly taken data, with very high stability, since November 2007 to the beginning of 2013. The array consisted of a carpet of about 7000 m2^2 Resistive Plate Chambers (RPCs) operated in streamer mode and equipped with both digital and analog readout, providing the measurement of particle densities up to few particles per cm2^2. The unique detector features (full coverage, readout granularity, wide dynamic range, etc) and location (very high altitude) allowed a detailed study of the lateral density profile of charged particles at ground very close to the shower axis and its description by a proper lateral distribution function (LDF). In particular, the information collected in the first 10 m from the shower axis have been shown to provide a very effective tool for the determination of the shower development stage ("age") in the energy range 50 TeV - 10 PeV. The sensitivity of the age parameter to the mass composition of primary Cosmic Rays is also discussed
    • …
    corecore