137 research outputs found

    Inhibition of cell growth and invasion by epidermal growth factor-targeted phagemid particles carrying siRNA against focal adhesion kinase in the presence of hydroxycamptothecin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies demonstrated the EGF-targeted phagemid particles carrying siRNA against Akt could be expressed efficiently in the presence of hydroxycamptothecin (HCPT). However, no significant cell growth inhibition was obtained. This study was to further investigate whether the EGF-targeted phagemid particles carrying siRNA would be a promising tool for anti-cancer siRNA delivery.</p> <p>Results</p> <p>We found that pSi4.1-siFAK phagemid particles could significantly inhibit the expression of focal adhesion kinase in the HCPT-treated cells. Moreover, we also observed that the particles could potently suppress cell growth and cell invasion.</p> <p>Conclusion</p> <p>These results indicated that EGF-targeted phagemid particles might be a promising tool for anti-cancer siRNA delivery in the presence of HCPT.</p

    Practical Speech Emotion Recognition Based on Online Learning: From Acted Data to Elicited Data

    Get PDF
    We study the cross-database speech emotion recognition based on online learning. How to apply a classifier trained on acted data to naturalistic data, such as elicited data, remains a major challenge in today’s speech emotion recognition system. We introduce three types of different data sources: first, a basic speech emotion dataset which is collected from acted speech by professional actors and actresses; second, a speaker-independent data set which contains a large number of speakers; third, an elicited speech data set collected from a cognitive task. Acoustic features are extracted from emotional utterances and evaluated by using maximal information coefficient (MIC). A baseline valence and arousal classifier is designed based on Gaussian mixture models. Online training module is implemented by using AdaBoost. While the offline recognizer is trained on the acted data, the online testing data includes the speaker-independent data and the elicited data. Experimental results show that by introducing the online learning module our speech emotion recognition system can be better adapted to new data, which is an important character in real world applications

    An Updated Search of Steady TeV γ−\gamma-Ray Point Sources in Northern Hemisphere Using the Tibet Air Shower Array

    Full text link
    Using the data taken from Tibet II High Density (HD) Array (1997 February-1999 September) and Tibet-III array (1999 November-2005 November), our previous northern sky survey for TeV γ−\gamma-ray point sources has now been updated by a factor of 2.8 improved statistics. From 0.0∘0.0^{\circ} to 60.0∘60.0^{\circ} in declination (Dec) range, no new TeV γ−\gamma-ray point sources with sufficiently high significance were identified while the well-known Crab Nebula and Mrk421 remain to be the brightest TeV γ−\gamma-ray sources within the field of view of the Tibet air shower array. Based on the currently available data and at the 90% confidence level (C.L.), the flux upper limits for different power law index assumption are re-derived, which are approximately improved by 1.7 times as compared with our previous reported limits.Comment: This paper has been accepted by hepn

    Does or did the supernova remnant Cassiopeia A operate as a PeVatron?

    Full text link
    For decades, supernova remnants (SNRs) have been considered the prime sources of Galactic Cosmic rays (CRs). But whether SNRs can accelerate CR protons to PeV energies and thus dominate CR flux up to the knee is currently under intensive theoretical and phenomenological debate. The direct test of the ability of SNRs to operate as CR PeVatrons can be provided by ultrahigh-energy (UHE; Eγ≥100E_\gamma \geq 100~TeV) γ\gamma-rays. In this context, the historical SNR Cassiopeia A (Cas A) is considered one of the most promising target for UHE observations. This paper presents the observation of Cas A and its vicinity by the LHAASO KM2A detector. The exceptional sensitivity of LHAASO KM2A in the UHE band, combined with the young age of Cas A, enabled us to derive stringent model-independent limits on the energy budget of UHE protons and nuclei accelerated by Cas A at any epoch after the explosion. The results challenge the prevailing paradigm that Cas A-type SNRs are major suppliers of PeV CRs in the Milky Way.Comment: 11 pages, 3 figures, Accepted by the APJ

    Measurement of ultra-high-energy diffuse gamma-ray emission of the Galactic plane from 10 TeV to 1 PeV with LHAASO-KM2A

    Full text link
    The diffuse Galactic γ\gamma-ray emission, mainly produced via interactions between cosmic rays and the interstellar medium and/or radiation field, is a very important probe of the distribution, propagation, and interaction of cosmic rays in the Milky Way. In this work we report the measurements of diffuse γ\gamma-rays from the Galactic plane between 10 TeV and 1 PeV energies, with the square kilometer array of the Large High Altitude Air Shower Observatory (LHAASO). Diffuse emissions from the inner (15∘<l<125∘15^{\circ}<l<125^{\circ}, ∣b∣<5∘|b|<5^{\circ}) and outer (125∘<l<235∘125^{\circ}<l<235^{\circ}, ∣b∣<5∘|b|<5^{\circ}) Galactic plane are detected with 29.1σ29.1\sigma and 12.7σ12.7\sigma significance, respectively. The outer Galactic plane diffuse emission is detected for the first time in the very- to ultra-high-energy domain (E>10E>10~TeV). The energy spectrum in the inner Galaxy regions can be described by a power-law function with an index of −2.99±0.04-2.99\pm0.04, which is different from the curved spectrum as expected from hadronic interactions between locally measured cosmic rays and the line-of-sight integrated gas content. Furthermore, the measured flux is higher by a factor of ∼3\sim3 than the prediction. A similar spectrum with an index of −2.99±0.07-2.99\pm0.07 is found in the outer Galaxy region, and the absolute flux for 10≲E≲6010\lesssim E\lesssim60 TeV is again higher than the prediction for hadronic cosmic ray interactions. The latitude distributions of the diffuse emission are consistent with the gas distribution, while the longitude distributions show clear deviation from the gas distribution. The LHAASO measurements imply that either additional emission sources exist or cosmic ray intensities have spatial variations.Comment: 12 pages, 8 figures, 5 tables; accepted for publication in Physical Review Letters; source mask file provided as ancillary fil

    Construction and On-site Performance of the LHAASO WFCTA Camera

    Full text link
    The focal plane camera is the core component of the Wide Field-of-view Cherenkov/fluorescence Telescope Array (WFCTA) of the Large High-Altitude Air Shower Observatory (LHAASO). Because of the capability of working under moonlight without aging, silicon photomultipliers (SiPM) have been proven to be not only an alternative but also an improvement to conventional photomultiplier tubes (PMT) in this application. Eighteen SiPM-based cameras with square light funnels have been built for WFCTA. The telescopes have collected more than 100 million cosmic ray events and preliminary results indicate that these cameras are capable of working under moonlight. The characteristics of the light funnels and SiPMs pose challenges (e.g. dynamic range, dark count rate, assembly techniques). In this paper, we present the design features, manufacturing techniques and performances of these cameras. Finally, the test facilities, the test methods and results of SiPMs in the cameras are reported here.Comment: 45 pages, 21 figures, articl

    Search for the Chiral Magnetic Effect in Au+Au collisions at sNN=27\sqrt{s_{_{\rm{NN}}}}=27 GeV with the STAR forward Event Plane Detectors

    Full text link
    A decisive experimental test of the Chiral Magnetic Effect (CME) is considered one of the major scientific goals at the Relativistic Heavy-Ion Collider (RHIC) towards understanding the nontrivial topological fluctuations of the Quantum Chromodynamics vacuum. In heavy-ion collisions, the CME is expected to result in a charge separation phenomenon across the reaction plane, whose strength could be strongly energy dependent. The previous CME searches have been focused on top RHIC energy collisions. In this Letter, we present a low energy search for the CME in Au+Au collisions at sNN=27\sqrt{s_{_{\rm{NN}}}}=27 GeV. We measure elliptic flow scaled charge-dependent correlators relative to the event planes that are defined at both mid-rapidity ∣η∣<1.0|\eta|<1.0 and at forward rapidity 2.1<∣η∣<5.12.1 < |\eta|<5.1. We compare the results based on the directed flow plane (Ψ1\Psi_1) at forward rapidity and the elliptic flow plane (Ψ2\Psi_2) at both central and forward rapidity. The CME scenario is expected to result in a larger correlation relative to Ψ1\Psi_1 than to Ψ2\Psi_2, while a flow driven background scenario would lead to a consistent result for both event planes[1,2]. In 10-50\% centrality, results using three different event planes are found to be consistent within experimental uncertainties, suggesting a flow driven background scenario dominating the measurement. We obtain an upper limit on the deviation from a flow driven background scenario at the 95\% confidence level. This work opens up a possible road map towards future CME search with the high statistics data from the RHIC Beam Energy Scan Phase-II.Comment: main: 8 pages, 5 figures; supplementary material: 2 pages, 1 figur

    Event-by-event correlations between Λ\Lambda (Λˉ\bar{\Lambda}) hyperon global polarization and handedness with charged hadron azimuthal separation in Au+Au collisions at sNN=27 GeV\sqrt{s_{\text{NN}}} = 27 \text{ GeV} from STAR

    Full text link
    Global polarizations (PP) of Λ\Lambda (Λˉ\bar{\Lambda}) hyperons have been observed in non-central heavy-ion collisions. The strong magnetic field primarily created by the spectator protons in such collisions would split the Λ\Lambda and Λˉ\bar{\Lambda} global polarizations (ΔP=PΛ−PΛˉ<0\Delta P = P_{\Lambda} - P_{\bar{\Lambda}} < 0). Additionally, quantum chromodynamics (QCD) predicts topological charge fluctuations in vacuum, resulting in a chirality imbalance or parity violation in a local domain. This would give rise to an imbalance (Δn=NL−NR⟨NL+NR⟩≠0\Delta n = \frac{N_{\text{L}} - N_{\text{R}}}{\langle N_{\text{L}} + N_{\text{R}} \rangle} \neq 0) between left- and right-handed Λ\Lambda (Λˉ\bar{\Lambda}) as well as a charge separation along the magnetic field, referred to as the chiral magnetic effect (CME). This charge separation can be characterized by the parity-even azimuthal correlator (Δγ\Delta\gamma) and parity-odd azimuthal harmonic observable (Δa1\Delta a_{1}). Measurements of ΔP\Delta P, Δγ\Delta\gamma, and Δa1\Delta a_{1} have not led to definitive conclusions concerning the CME or the magnetic field, and Δn\Delta n has not been measured previously. Correlations among these observables may reveal new insights. This paper reports measurements of correlation between Δn\Delta n and Δa1\Delta a_{1}, which is sensitive to chirality fluctuations, and correlation between ΔP\Delta P and Δγ\Delta\gamma sensitive to magnetic field in Au+Au collisions at 27 GeV. For both measurements, no correlations have been observed beyond statistical fluctuations.Comment: 10 pages, 10 figures; paper from the STAR Collaboratio
    • …
    corecore