2 research outputs found

    Long - range foundry Al composite alloys

    Get PDF
    The technology of obtaining nanostructural composite aluminum alloys consists in the plasma injection of refractory nanometric particles with simultaneous two-plane magnetic dynamic mixing of the melt. Particularly important in obtaining composite aluminum matrix alloys is the provision of the introduced particles wettability with the matrix melt for forming stable adhesive bonds. Nanostructured powder components can be considered not only to be a starting product for producing nanostructural composite aluminum alloys but as an independent commerce product. Nanostructural composite metal matrix alloys make one of the most prospective structural materials of the future, and liquid-phase technologies of their obtaining are the most competitive in producing products of nanostructural composite aluminum alloys in the industrial scale

    Silicon production using long flaming coal and improvement of its quality indicators

    Get PDF
    The object of this study is to explore possibility of metallothermic producing of crystalline silicon using various types of carbon reducing agents as a reducing agent. The experience of existing enterprises shows that one of the best carbon reducing agents qualifying silicon electric melting technology is charcoal. On the other hand, charcoal has a number of disadvantages, such as its scarcity, high cost and low mechanical strength. Experimental melts has shown the principal possibility of producing the crystalline silicon that meets the requirements of quartz standard using low ash special coke and long-flame coal as reducing agents
    corecore