98 research outputs found

    Variation of Main Phenophases in Phenological Calendar in East China and Their Response to Climate Change

    Get PDF
    Based on the phenological data from China Phenological Observation Network, we compiled the phenological calendars of 3 phenological observation stations (Shanghai, Nanjing, and Hefei) in East China for 1987–1996 and 2003–2012 according to the sequences of mean phenophases. We calculated the correlated coefficient and the root mean square error (RMSE) between phenophases and the beginning of meteorological seasons to determine the beginning date of phenological season. By comparing new phenological calendars with the old ones, we discussed the variation of phenophases and their responses to temperature. The conclusions are as follows. (1) The beginning dates of spring and summer advanced, while those of autumn and winter delayed. Thus, summers got longer and winters got shorter. (2) The beginning time of the four phenological seasons was advancing during 1987–1996, while it was delaying during 2003–2012. (3) Most spring and summer phenophases occur earlier and most autumn and winter phenophases occur later in 2003–2012 than in 1987–1996. (4) The beginning time of phenological seasons was significantly correlated with temperature. The phenological sensitivities to temperature ranged from −6.49 to −6.55 days/°C in spring, −3.65 to −5.02 days/°C in summer, 8.13 to 10.27 days/°C in autumn, and 4.76 to 10.00 days/°C in winter

    Based on the phenological data from China Phenological Observation Network, we compiled the phenological calendars of 3 phenological observation stations

    Get PDF
    according to the sequences of mean phenophases. We calculated the correlated coefficient and the root mean square error (RMSE) between phenophases and the beginning of meteorological seasons to determine the beginning date of phenological season. By comparing new phenological calendars with the old ones, we discussed the variation of phenophases and their responses to temperature. The conclusions are as follows

    Effectiveness of 18F-FDG PET/CT in the diagnosis, staging and recurrence monitoring of Ewing sarcoma family of tumors: A meta-analysis of 23 studies

    Get PDF
    Background: To investigate the value of positron emission tomography (PET) and PET/computed tomography (CT) using fluorine-18-fluorodeoxyglucose (F-18-FDG) in the diagnosis, staging, restaging and recurrence monitoring of Ewing sarcoma family of tumors (ESFTs), a meta-analysis was performed through systematically searching PubMed, Embase, and Cochrane Central library to retrieve articles. Methods: After screening and diluting out the articles that met inclusion criteria to be used for statistical analysis the pooled evaluation indexes including sensitivity, specificity, and diagnostic odd ratio (DOR) as well as the summary receiver operating characteristic curve (SROC) were calculated involving diagnostic data (true positive, false positive, false negative, and true negative) extracted from original studies. Results: Screening determined that out of 2007, 23 studies involving a total of 524 patients were deemed viable for inclusion in the meta-analysis. The results of the analysis showed that the sensitivity and specificity were at 86% and 80%, respectively. Additionally, a satisfactory accuracy of F-18-FDG PET and PET/CT was observed in detecting ESFT recurrence, lung metastasis, and osseous metastasis. Conclusion: This meta-analysis suggests that F-18-FDG PET and PET/CT with an extremely high accuracy could be considered a valuable method for detecting distant metastasis and post-operational recurrence of ESFT, which might have a profound impact on the development of treatment protocols for ESFT

    Recent Progress in Nitrogen-Doped Metal-Free Electrocatalysts for Oxygen Reduction Reaction

    No full text
    Electrocatalysis for the oxygen reduction reaction (ORR) at the cathode plays a critical role in fuel cells and metal-air batteries. However, the high-cost and sluggish kinetics of the catalytic reaction have hindered its development. Therefore, developing efficient catalysts to address these issues is of vital significance. In this work, we summarized the recent progress of nitrogen (N)-doped metal-free catalysts for the ORR, owing to their high catalytic activity (comparable to Pt/C) and cost-effectiveness. The synthetic strategy and the morphology structure to catalytic performance are mainly discussed. Furthermore, the design of N-doped nanomaterials with other heteroatoms in aiming to further enhance the ORR performance is also reviewed. At the end of the review, we provide a brief summary of the N-doped carbon-based catalysts in enhancing the ORR performance and give future perspectives for their further development

    Study on the Preparation and Anisotropic Distribution of Mechanical Properties of Well-Aligned PMIA Nanofiber Mats Reinforced Composites

    No full text
    Well-aligned PMIA nanofiber mats were fabricated by electrospinning and then hot-pressing was used to produce PMIA nanofiber mats reinforced PLA matrix by layer-by-layer with the interlayer angles of 0, 45, and 90°. Orthogonal experimental design was employed to fix the effect of the hot-pressing parameters on the tensile strength of nanocomposites, and SEM was used to characterize the broken sections of the nanocomposites after tensile test. The optimized process parameters were achieved of pressure as 1000 Pa, temperature as 180°C, and time as 30 min. The SEM images of broken sections showed that the different laminate forms and the state of bearing load of nanofibers resulted in the different morphologies of broken sections. The break strength of PMIA/PLA nanocomposites with any of interlayer angles at different tensile testing directions was revealed as follows: axial > oblique > transverse, and the initial modulus also showed the same except the angle of 90° with the approach initial modulus at the axial and transverse directions. The maximum tensile strength and modulus of the nanocomposites were 17.12 MPa and 1642.17 MPa, respectively, of the axial tensile testing directions of the interlayer angle of 0°

    N,P-Codoped Carbon Layer Coupled with MoP Nanoparticles as an Efficient Electrocatalyst for Hydrogen Evolution Reaction

    No full text
    Efficient electrocatalyst plays a significant role on the development of hydrogen energy. In this work, an N,P-codoped carbon layer coupled with MoP nanoparticles (MoP/NPCs) was prepared through a facile high-temperature pyrolysis treatment. The obtained MoP/NPCs presented efficient activity for hydrogen evolution reaction (HER), with low onset potential of 90 mV, and a small Tafel slope (71 mV dec−1), as well as extraordinary stability in acidic electrolyte. This work provides a new facile strategy for the design and synthesis of sustainable and effective molybdenum-based electrocatalysts as alternatives to non-Pt catalysts for HER
    corecore