41 research outputs found

    Transcriptomics analysis of differentially expressed genes in subcutaneous and perirenal adipose tissue of sheep as affected by their pre- and early postnatal malnutrition histories

    Get PDF
    Background Early life malnutrition is known to target adipose tissue with varying impact depending on timing of the insult. This study aimed to identify differentially expressed genes in subcutaneous (SUB) and perirenal (PER) adipose tissue of 2.5-years old sheep to elucidate the biology underlying differential impacts of late gestation versus early postnatal malnutrition on functional development of adipose tissues. Adipose tissues were obtained from 37 adult sheep born as twins to dams fed either NORM (fulfilling energy and protein requirements), LOW (50% of NORM) or HIGH (110% of protein and 150% of energy requirements) diets in the last 6-weeks of gestation. From day 3 to 6 months of age, lambs were fed high-carbohydrate-high-fat (HCHF) or moderate low-fat (CONV) diets, and thereafter the same moderate low-fat diet. Results The gene expression profile of SUB in the adult sheep was not affected by the pre- or early postnatal nutrition history. In PER, 993 and 186 differentially expressed genes (DEGs) were identified in LOW versus HIGH and NORM, respectively, but no DEG was found between HIGH and NORM. DEGs identified in the mismatched pre- and postnatal nutrition groups LOW-HCHF (101) and HIGH-HCHF (192) were largely downregulated compared to NORM-CONV. Out of 831 DEGs, 595 and 236 were up- and downregulated in HCHF versus CONV, respectively. The functional enrichment analyses revealed that transmembrane (ion) transport activities, motor activities related to cytoskeletal and spermatozoa function (microtubules and the cytoskeletal motor protein, dynein), and responsiveness to the (micro) environmental extracellular conditions, including endocrine and nervous stimuli were enriched in the DEGs of LOW versus HIGH and NORM. We confirmed that mismatched pre- and postnatal feeding was associated with long-term programming of adipose tissue remodeling and immunity-related pathways. In agreement with phenotypic measurements, early postnatal HCHF feeding targeted pathways involved in kidney cell differentiation, and mismatched LOW-HCHF sheep had specific impairments in cholesterol metabolism pathways. Conclusions Both pre- and postnatal malnutrition differentially programmed (patho-) physiological pathways with implications for adipose functional development associated with metabolic dysfunctions, and PER was a major target

    Vector dark matter from split SU(2) gauge bosons

    Full text link
    We propose a vector dark matter model with an exotic dark SU(2) gauge group. Two Higgs triplets are introduced to spontaneously break the symmetry. All of the dark gauge bosons become massive, and the lightest one is a viable vector DM candidate. Its stability is guaranteed by a remaining Z_2 symmetry. We study the parameter space constrained by the Higgs measurement data, the dark matter relic density, and direct and indirect detection experiments. We find numerous parameter points satisfying all the constraints, and they could be further tested in future experiments. Similar methodology can be used to construct vector dark matter models from an arbitrary SO(N) gauge group.Comment: 25 pages, 5 figure

    Gene coexpression network analysis reveals perirenal adipose tissue as an important target of prenatal malnutrition in sheep

    Get PDF
    We have previously demonstrated that pre- and early postnatal malnutrition in sheep induced depot- and sex-specific changes in adipose morphological features, metabolic outcomes, and transcriptome in adulthood, with perirenal (PER) as the major target followed by subcutaneous (SUB) adipose tissue. We aimed to identify coexpressed and hub genes in SUB and PER to identify the underlying molecular mechanisms contributing to the early nutritional programming of adipose-related phenotypic outcomes. Transcriptomes of SUB and PER of male and female adult sheep with different pre- and early postnatal nutrition histories were used to construct networks of coexpressed genes likely to be functionally associated with pre- and early postnatal nutrition histories and phenotypic traits using weighted gene coexpression network analysis. The modules from PER showed enrichment of cell cycle regulation, gene expression, transmembrane transport, and metabolic processes associated with both sexes' prenatal nutrition. In SUB (only males), a module of enriched adenosine diphosphate metabolism and development correlated with prenatal nutrition. Sex-specific module enrichments were found in PER, such as chromatin modification in the male network but histone modification and mitochondria- and oxidative phosphorylation-related functions in the female network. These sex-specific modules correlated with prenatal nutrition and adipocyte size distribution patterns. Our results point to PER as a primary target of prenatal malnutrition compared to SUB, which played only a minor role. The prenatal programming of gene expression and cell cycle, potentially through epigenetic modifications, might be underlying mechanisms responsible for observed changes in PER expandability and adipocyte-size distribution patterns in adulthood in both sexes

    Karyotype Analysis of Diploid and Spontaneously Occurring Tetraploid Blood Orange [Citrus sinensis (L.) Osbeck] Using Multicolor FISH With Repetitive DNA Sequences as Probes

    Get PDF
    Blood orange [Citrus sinensis (L.) Osbeck] has been increasingly appreciated by consumers worldwide owing to its brilliant red color, abundant anthocyanin and other health-promoting compounds. However, there is still relatively little known about its cytogenetic characteristics, probably because of the small size and similar morphology of metaphase chromosomes and the paucity of chromosomal landmarks. In our previous study, a naturally occurring tetraploid blood orange plant was obtained via seedling screening. Before this tetraploid germplasm can be manipulated into a citrus triploid seedless breeding program, it is of great importance to determine its chromosome characterization and composition. In the present study, an integrated karyotype of blood orange was constructed using sequential multicolor fluorescence in situ hybridization (FISH) with four satellite repeats, two ribosomal DNAs (rDNAs), a centromere-like repeat and an oligonucleotide of telomere repeat (TTTAGGG)3 as probes. Satellite repeats were preferentially located at the terminal regions of the chromosomes of blood orange. Individual somatic chromosome pairs of blood orange were unambiguously identified by repetitive DNA-based multicolor FISH. These probes proved to be effective chromosomal landmarks. The karyotype was formulated as 2n = 2x = 18 = 16m+2sm (1sat) with the karyotype asymmetry degree belonging to 2B. The chromosomal distribution pattern of these repetitive DNAs in this spontaneously occurring tetraploid was identical to that of the diploid, but the tetraploid carried twice the number of hybridization sites as the diploid, indicating a possible pathway involving the spontaneous duplication of chromosome sets in nucellar cells. Our work may facilitate the molecular cytogenetic study of blood orange and provide chromosomal characterization for the future utilization of this tetraploid germplasm in the service of seedless breeding programs

    The first draft reference genome of the American mink ( Neovison vison )

    Get PDF
    Abstract The American mink (Neovison vison) is a semiaquatic species of mustelid native to North America. It’s an important animal for the fur industry. Many efforts have been made to locate genes influencing fur quality and color, but this search has been impeded by the lack of a reference genome. Here we present the first draft genome of mink. In our study, two mink individuals were sequenced by Illumina sequencing with 797 Gb sequence generated. Assembly yielded 7,175 scaffolds with an N50 of 6.3 Mb and length of 2.4 Gb including gaps. Repeat sequences constitute around 31% of the genome, which is lower than for dog and cat genomes. The alignments of mink, ferret and dog genomes help to illustrate the chromosomes rearrangement. Gene annotation identified 21,053 protein-coding sequences present in mink genome. The reference genome’s structure is consistent with the microsatellite-based genetic map. Mapping of well-studied genes known to be involved in coat quality and coat color, and previously located fur quality QTL provide new knowledge about putative candidate genes for fur traits. The draft genome shows great potential to facilitate genomic research towards improved breeding for high fur quality animals and strengthen our understanding on evolution of Carnivora

    Wnt-5a Promotes Neural Development and Differentiation by Regulating CDK5 via Ca2+/Calpain Pathway

    Get PDF
    Background/Aims: The Wnt signaling pathway has essential functions in the central nervous system, where it regulates the major physiological functions of neurons, including development, differentiation, and plasticity. Wnt signaling controls these cellular events; however, how Wnt pathways integrate into a coherent developmental program remains unclear. Methods: The expression and secretion of different WNT ligands (Wnt-1, Wnt-3a, Wnt-4, Wnt-5a, Wnt-11), and the levels and activities of cyclin-dependent kinases (CDK2, CDK4, CDK6/cyclin D, cyclin E) or CDK5 (CDK5/p35 and p25) were measured in Rat cortex at different embryonic stages, and in RA/BDNF-induced differentiated SH-SY5Y cell model, by Quantitative real-time PCR (qPCR), western blotting, ELISA, and in vitro CDK5 kinase assays. MAP2-BrdU double staining was used to assess cell differentiation and cell cycle exit in an RA/BDNF-induced differentiated SH-SY5Y cell model. The effects of CDK5 and Ca2+/calpain signaling were assessed using specific chemical inhibitors. Results: We found that Wnt-1 was unchanged and Wnt-3a was attenuated, whereas Wnt-4, Wnt-5a, and Wnt-11 were markedly up-regulated, during the development of neurons and differentiated SH-SY5Y cells. Simultaneously, the activity of CDK5 was elevated. Furthermore, we describe crosstalk between non-canonical Wnt signaling and CDK5 in the development of neurons and differentiated SH-SY5Y cells. Wnt-5a, a non-canonical Wnt ligand, regulated CDK5 via Ca2+/calpain signaling in both neuronal development and differentiation. Inhibition of Wnt-5a diminished CDK5 kinase activity via the Ca2+/calpain pathway, thereby attenuating RA-BDNF induced SH-SY5Y cell differentiation. Conclusion: Wnt-5a signaling is a significant regulator of neuronal development and differentiation and upregulates CDK5 kinase activity via Ca2+/calpain signaling
    corecore