17 research outputs found

    Assessment of prevalence and risk factors of diabetes and pre‑diabetes in South Africa

    Get PDF
    AVAILABILITY OF DATA AND MATERIALS : This study utilized existing survey datasets that are in the public domain and freely available from https://www.dhsprogram.com/data/dataset_admin/ login_main.cfm with the permission from the DHS Program.BACKGROUND : Diabetes prevalence, as well as that of pre-diabetes, is rapidly increasing in South Africa. Individuals with pre-diabetes have a high risk of developing type 2 diabetes, which is reversible with a change in lifestyle. If left untreated, diabetes can lead to serious health complications. Our objective was to assess the prevalence of diabetes and pre-diabetes, and to investigate the associated risk factors of each in the South African population. METHOD : This study made use of the South African Demographic Health Survey 2016 data. The study participants included 6442 individuals aged 15 years and older. A generalized additive mixed model was employed to account for the complex survey design of the study as well as well spatial autocorrelation in the data. RESULTS : The observed prevalence of pre-diabetes and diabetes was 67% and 22%, respectively. Among those who had never been tested for diabetes prior to the survey, 10% of females and 6% of males were found to be diabetic, and 67% of both males and females were found to be pre-diabetic. Thus, a large proportion of the South African population remains undiagnosed. The model revealed both common and uncommon factors significantly associated with pre-diabetes and diabetes. This highlights the importance of considering diabetic status as a three-level categorical outcome, rather than binary. In addition, significant interactions between some of the lifestyle factors, demographic factors and anthropometric measures were revealed, which indicates that the effects each these factors have on the likelihood of an individual being pre-diabetic or diabetic is confounded by other factors. CONCLUSION : The risk factors for diabetes and pre-diabetes are many and complicated. Individuals need to be aware of their diabetic status before health complications arise. It is therefore important for all stakeholders in government and the private sector of South Africa to get involved in providing education and creating awareness about diabetes. Regular testing of diabetes, as well as leading a healthy lifestyle, should be encouraged.The South African Medical Research Council through its Division of Research Capacity Development under the Biostatistics Capacity Development partnership with the Belgian Development Agency (Enabel) under its framework of Building Academic Partnerships for Economic Development (BAPED).am2023Statistic

    Using mixed effects logistic regression models for complex survey data on malaria rapid diagnostic test results

    No full text
    Abstract Background The effect of malaria in Nigeria is still worrisome and has remained a leading public health issue in the country. In 2016, Nigeria was the highest malaria burden country among the 15 countries in sub-Saharan Africa that accounted for the 80% global malaria cases. The purpose of this study is to utilize appropriate statistical models in identifying socio-economic, demographic and geographic risk factors that have influenced malaria transmission in Nigeria, based on malaria rapid diagnostic test survey results. This study contributes towards re-designing intervention strategies to achieve the target of meeting the Sustainable Development Goals 2030 Agenda for total malaria elimination. Methods This study adopted the generalized linear mixed models approach which accounts for the complexity of the sample survey design associated with the data. The 2015 Nigeria malaria indicator survey data of children between 6 and 59 months are used in the study. Results From the findings of this study, the cluster effect is significant (P<0.0001)(P<0.0001) (P<0.0001) which has suggested evidence of heterogeneity among the clusters. It was found that the vulnerability of a child to malaria infection increases as the child advances in age. Other major significant factors were; the presence of anaemia in a child, an area where a child resides (urban or rural), the level of the mother’s education, poverty level, number of household members, sanitation, age of head of household, availability of electricity and the type of material for roofing. Moreover, children from Northern and South-West regions were also found to be at higher risk of malaria disease and re-infection. Conclusion Improvement of socio-economic development and quality of life is paramount to achieving malaria free Nigeria. There is a strong link of malaria risk with poverty, under-development and the mother’s educational level

    Comparison of under-five mortality for 2000, 2005 and 2011 surveys in Ethiopia

    No full text
    Abstract Background Though the socio-economic situation of the Ethiopian household is improving along with the decrease in under-five child mortality. But, under-five mortality is still one of the major problems. Identification of the risk factors change over time which mismatches with the diminishing rate of under-five mortality is important to address the problems. Methods The survey data used for this research was taken from three different Ethiopian Demographic and Health Surveys (2000, 2005 and 2011). This data was used to identify the effect of time varying under-five mortality risk factors. The Cox proportional hazard model was adapted for the analysis. Results The effect of respondent’s current age, age at first birth and educational level on the under-five mortality rate significantly diminishes in the recent surveys. On the other hand, the effect of the number of births in the last 5 years increases more in 2011 than in the earlier two surveys. Similarly, number of household members in the house and the number of under-five children in the house demonstrated a difference through years. Regarding total children ever born, child death is more for the year 2000 followed by 2005 and 2011. Conclusion Based on the study, our findings confirmed that under-five mortality is a serious problem in the country. The analysis displayed that the hazard of under-five mortality has a decreasing pattern in years. The result for regions showed that there was an increase in years for some of the regions. This research work gives necessary information to device improved teaching for family planning and children health care to change the child mortality circumstance in the country. Our study suggests that the impact of demographic characteristics and socio-economic factors on child mortality should account for their integral changes over time

    Application of Linear Mixed Model: The Effect of Climatic Factors on the Wood Anatomy of Two Eucalypt Clones

    No full text
    Eucalypt trees are one of tree species used for the manufacturing of papers in South Africa. The manufacturing of paper consists of cooking the wood with chemicals until obtaining a pulp. The wood is made of different cells. The shape and structure of these cells, called wood anatomical characteristics are important for the quality of paper. In addition, the anatomical characteristics of wood are influenced by environmental factors like climatic factors, soil compositions etc…. Therefore, in this study we investigated the effect of climatic factors on wood anatomical characteristics of two&nbsp;Eucalyptus&nbsp;clones. In the experiment, two sets of data were recorded daily, the climatic parameters and the tree growth. After cutting the trees, the anatomical properties of the wood were measured using microscope and image analysis. The longitudinal linear mixed model with age, season, temperature, rainfall, solar radiation, relative humidity and wind speed as the fixed effects factors and tree as random effect factor was fitted to the data. Lagged effects climatic variables were identified and included in the model. To account for the physical characteristics of the trees we included the effect of diameter at breast height (DBH), stem radius, daily radial increment, and the suppression or dominance of the tree in the model. It was found that wood anatomical characteristics of the two clones were more affected by climatic variables when the tree was on juvenile stage as compared to mature stage. &nbsp

    Survival analysis of under-five mortality using Cox and frailty models in Ethiopia

    Get PDF
    Abstract Background The risk of a child dying before reaching 5 years of age is highest in sub-Saharan African countries. But in Ethiopia, under-five mortality rates have shown a substantial decline. Methods For this study, the Cox regression model for fixed and time-dependent explanatory variables was studied for under-five mortality in Ethiopia. We adapted survival analysis using the Cox regression model with 2011 Ethiopian Demographic and Health Survey data. Results From the results, it was found that under-five children who live in Addis Ababa had a lower hazard (risk) of death (p value = 0.048). This could be as a result of higher health facilities and living standards in Addis Ababa, compared to other regions. Under-five children who lived in rural areas had a higher hazard (risk) of death compared to those living in urban areas. In addition, under-five children who lived in rural areas had 18% (p value = 0.01) more hazard (risk) of death than those living in urban areas. Furthermore, with older mothers, the chance of a child dying before reaching the age of 5 is lower. Conclusion The chances of a child dying before reaching the age of 5 are less if the mother does not become pregnant again before the child reaches the age of 5. Therefore, giving birth when older and not becoming pregnant again before the child reaches the age of 5 is one means of reducing under-five mortality

    Spatiotemporal Trends and Distributions of Malaria Incidence in the Northwest Ethiopia

    No full text
    Understanding and extracting noticeable patterns of malaria surveillance data at the district level are crucial for malaria prevention, control, and elimination progress. This study aimed to analyze spatiotemporal trends and nonparametric dynamics of malaria incidences in northwest Ethiopia, considering spatial and temporal correlations. The data were analyzed using count regression spatiotemporal models under the Bayesian setups, and parameters were estimated using integrated nested Laplace approximations (INLA). The region had a declining linear trend, and the average annual malaria incidence rate was 24.8 per 1,000 persons between 2012 and 2020. The malaria incidence rate was decreased by 0.984 (95% CI: 0.983, 0.986) per unit increase in months between July 2012 and June 2020. Districts found in the western and northwestern parts of the region had a steeper trend, while districts in the eastern and southern parts had a less steep trend than the average trend of the region. Compared to the regional level trend, the decreasing rate of malaria incidence trends was lower in most town administrations. The nonparametric dynamics showed that the monthly malaria incidence had a sinusoidal wave shape that varied throughout study periods. Malaria incidence had a decreasing linear trend changed across districts of the study region, and the steepness of trends of districts might not depend on incidences. Thus, an intervention and controlling mechanism that considers malaria incidences and district-specific differential trends would be indispensable to mitigate malaria transmission in the region

    Seasonal and spatial variations of malaria transmissions in northwest Ethiopia: Evaluating climate and environmental effects using generalized additive model

    No full text
    The impacts of climate change and environmental predictors on malaria epidemiology remain unclear and not well investigated in the Sub-Sahara African region. This study was aimed to investigate the nonlinear effects of climate and environmental factors on monthly malaria cases in northwest Ethiopia, considering space-time interaction effects. The monthly malaria cases and populations sizes of the 152 districts were obtained from the Amhara public health institute and the central statistical agency of Ethiopia. The climate and environmental data were retrieved from US National Oceanic and Atmospheric Administration. The data were analyzed using a spatiotemporal generalized additive model. The spatial, temporal, and space-time interaction effects had higher contributions in explaining the spatiotemporal distribution of malaria transmissions. Malaria transmission was seasonal, in which a higher number of cases occurred from September to November. The long-term trend of malaria incidence has decreased between 2012 and 2018 and has turned to an increased pattern since 2019. Areas neighborhood to the Abay gorge and Benshangul-Gumuz, South Sudan, and Sudan border have higher spatial effects. Climate and environmental predictors had significant nonlinear effects, in which their effects are not stationary through the ranges of values of variables, and they had a smaller contributions in explaining the variabilities of malaria incidence compared to seasonal, spatial and temporal effects. Effects of climate and environmental predictors were nonlinear and varied across areas, ecology, and landscape of the study sites, which had little contribution to explaining malaria transmission variabilities with an account of space and time dimensions. Hence, exploring and developing an early warning system that predicts the outbreak of malaria transmission would have an essential role in controlling, preventing, and eliminating malaria in areas with lower and higher transmission levels and ultimately lead to the achievement of malaria GTS milestones

    Prevalence and risk factors of malaria in Ethiopia

    Get PDF
    Abstract Background More than 75% of the total area of Ethiopia is malarious, making malaria the leading public health problem in Ethiopia. The aim of this study was to investigate the prevalence rate and the associated socio-economic, geographic and demographic factors of malaria based on the rapid diagnosis test (RDT) survey results. Methods From December 2006 to January 2007, a baseline malaria indicator survey in Amhara, Oromiya and Southern Nation Nationalities and People (SNNP) regions of Ethiopia was conducted by The Carter Center. This study uses this data. The method of generalized linear model was used to analyse the data and the response variable was the presence or absence of malaria using the rapid diagnosis test (RDT). Results The analyses show that the RDT result was significantly associated with age and gender. Other significant covariates confounding variables are source of water, trip to obtain water, toilet facility, total number of rooms, material used for walls, and material used for roofing. The prevalence of malaria for households with clean water found to be less. Malaria rapid diagnosis found to be higher for thatch and stick/mud roof and earth/local dung plaster floor. Moreover, spraying anti-malaria to the house was found to be one means of reducing the risk of malaria. Furthermore, the housing condition, source of water and its distance, gender, and ages in the households were identified in order to have two-way interaction effects. Conclusion Individuals with poor socio-economic conditions are positively associated with malaria infection. Improving the housing condition of the household is one of the means of reducing the risk of malaria. Children and female household members are the most vulnerable to the risk of malaria. Such information is essential to design improved strategic intervention for the reduction of malaria epidemic in Ethiopia.</p

    Data_Sheet_1_The spatial effects of the household's food insecurity levels in Ethiopia: by ordinal geo-additive model.docx

    No full text
    BackgroundFood insecurity and vulnerability in Ethiopia are historical problems due to natural- and human-made disasters, which affect a wide range of areas at a higher magnitude with adverse effects on the overall health of households. In Ethiopia, the problem is wider with higher magnitude. Moreover, this geographical distribution of this challenge remains unexplored regarding the effects of cultures and shocks, despite previous case studies suggesting the effects of shocks and other factors. Hence, this study aims to assess the geographic distribution of corrected-food insecurity levels (FCSL) across zones and explore the comprehensive effects of diverse factors on each level of a household's food insecurity.MethodThis study analyzes three-term household-based panel data for years 2012, 2014, and 2016 with a total sample size of 11505 covering the all regional states of the country. An extended additive model, with empirical Bayes estimation by modeling both structured spatial effects using Markov random field or tensor product and unstructured effects using Gaussian, was adopted to assess the spatial distribution of FCSL across zones and to further explore the comprehensive effect of geographic, environmental, and socioeconomic factors on the locally adjusted measure.ResultDespite a chronological decline, a substantial portion of Ethiopian households remains food insecure (25%) and vulnerable (27.08%). The Markov random field (MRF) model is the best fit based on GVC, revealing that 90.04% of the total variation is explained by the spatial effects. Most of the northern and south-western areas and south-east and north-west areas are hot spot zones of food insecurity and vulnerability in the country. Moreover, factors such as education, urbanization, having a job, fertilizer usage in cropping, sanitation, and farming livestock and crops have a significant influence on reducing a household's probability of being at higher food insecurity levels (insecurity and vulnerability), whereas shocks occurrence and small land size ownership have worsened it.ConclusionChronically food insecure zones showed a strong cluster in the northern and south-western areas of the country, even though higher levels of household food insecurity in Ethiopia have shown a declining trend over the years. Therefore, in these areas, interventions addressing spatial structure factors, particularly urbanization, education, early marriage control, and job creation, along with controlling conflict and drought effect by food aid and selected coping strategies, and performing integrated farming by conserving land and the environment of zones can help to reduce a household's probability of being at higher food insecurity levels.</p
    corecore