56 research outputs found
Optimized 3D co-registration of ultra-low-field and high-field magnetic resonance images
The prototypes of ultra-low-field (ULF) MRI scanners developed in recent years represent new, innovative, cost-effective and safer systems, which are suitable to be integrated in multi-modal (Magnetoencephalography and MRI) devices. Integrated ULF-MRI and MEG scanners could represent an ideal solution to obtain functional (MEG) and anatomical (ULF MRI) information in the same environment, without errors that may limit source reconstruction accuracy. However, the low resolution and signal-to-noise ratio (SNR) of ULF images, as well as their limited coverage, do not generally allow for the construction of an accurate individual volume conductor model suitable for MEG localization. Thus, for practical usage, a high-field (HF) MRI image is also acquired, and the HF-MRI images are co-registered to the ULF-MRI ones. We address here this issue through an optimized pipeline (SWIM-Sliding WIndow grouping supporting Mutual information). The co-registration is performed by an affine transformation, the parameters of which are estimated using Normalized Mutual Information as the cost function, and Adaptive Simulated Annealing as the minimization algorithm. The sub-voxel resolution of the ULF images is handled by a sliding-window approach applying multiple grouping strategies to down-sample HF MRI to the ULF-MRI resolution. The pipeline has been tested on phantom and real data from different ULF-MRI devices, and comparison with well-known toolboxes for fMRI analysis has been performed. Our pipeline always outperformed the fMRI toolboxes (FSL and SPM). The HF-ULF MRI co-registration obtained by means of our pipeline could lead to an effective integration of ULF MRI with MEG, with the aim of improving localization accuracy, but also to help exploit ULF MRI in tumor imaging
Study of a two steps process for the valorization of PVC-containing wastes
Published online 27 November 2012The presence of organic compounds in wastes, namely polymer based compounds, is considered a potential relevant source of energy. However, the presence of polyvinyl chloride (PVC) in their composition, causes recycling problems when a thermal process is considered for the wastes treatment [1] preventing its use on processes which the main goal is the energy recovery (Zevenhoven et al. in Fuel 81:507â510, 2002; Kim in Waste Manag 21:609â616, 2001). A possible solution should consider a first step for chlorine removal, through a pyrolysis process previously to a subsequent thermal treatment, for energetic valorization. The present work assesses a possible process for treating PVC-containing wastes in an environmentally friendly way. It is based on the effective de-chlorination of PVC-containing wastes through a pyrolysis process at low temperature before the carbonaceous residue (chlorine free fraction) being subjected to a subsequent thermal treatment for energetic valorization with the production of a synthesis gas (syngas). In the end of the process concentrated hydrochloric acid or other chlorine solutions and a syngas, with high energetic potential are obtained. The synthesis gas produced can be used in turbines or gas engines, replacing the gases obtained from fossil non-renewable resources. The validation of the proposed treatment of PVC-containing wastes in pilot scale has also been performed
SQUIDs in biomagnetism : A roadmap towards improved healthcare
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 686865.Peer reviewedPublisher PD
Leaching as a pretreatment process to complement torrefaction in improving co-firing characteristics of Jatropha curcas seed cake
The presence of certain inorganic elements in biomass causes issues such as slagging, fouling and corrosion when co-firing with coal for power generation. In this work, the efficacy of leaching to remove these elements from Jatropha curcas seed cake was investigated. Leaching of both untorrefied and torrefied seed cakes was carried out in Milli-Q water at temperatures of 20, 35 and 50 °C. At 20 °C, the two critical elements, potassium and chlorine, decreased by as much as 85 and 97 %, respectively. Leaching at higher temperatures was only beneficial for the more intensely torrefied biomass, since they were more resistant to leaching. The electrical conductivity and ion content of the leachates were measured, as were the inorganic elemental content, dry ash content, volatile matter content and higher heating value (HHV) of the solid seed cake. A secondary benefit of the leaching was an increase in the HHV by up to 10 %
Ash agglomeration and deposition during combustion of poultry litter in a bubbling fluidized-bed combustor
peer-reviewedn this study, we have characterized the ash resulting from fluidized bed combustion of poultry litter as being dominated by a coarse fraction of crystalline ash composed of alkali-Ca-phosphates and a fine fraction of particulate K2SO4 and KCl. Bed agglomeration was found to be coating-induced with two distinct layers present. The inner layer (0.05â0.09 mm thick) was formed due to the reaction of gaseous potassium with the sand (SiO2) surface forming K-silicates with low melting points. Further chemical reaction on the surface of the bed material strengthened the coating forming a molten glassy phase. The outer layer was composed of loosely bound, fine particulate ash originating from the char. Thermodynamic equilibrium calculations showed slag formation in the combustion zone is highly temperature-dependent, with slag formation predicted to increase from 1.8 kg at 600 °C to 7.35 kg at 1000 °C per hour of operation (5.21 kg of ash). Of this slag phase, SiO2 and K2O were the dominant phases, accounting for almost 95%, highlighting the role of K-silicates in initiating bed agglomeration. The remaining 5% was predicted to consist mainly of Al2O3, K2SO4, and Na2O. Deposition downstream in the low-temperature regions was found to occur mostly through the vaporizationâcondensation mechanism, with equilibrium decreasing significantly with decreasing temperatures. The dominant alkali chloride-containing gas predicted to form in the combustion zone was KCl, which corresponds with the high KCl content in the fine baghouse ash
- âŠ