42 research outputs found

    Recovery of mycorrhizal fungi from wild collected protocorms of Madagascan endemic orchidAerangis ellisii(BS Williams) Schltr. and their use in seed germination in vitro

    Get PDF
    Orchid mycorrhizal fungi (OMF) are critical for seed germination and maintaining natural populations of orchids, yet the degree of specificity of most orchids to their mycorrhizal associates remains unknown. Many orchids are at risk of extinction, whether generalists or specialists, but orchid species of narrow fungal specificity are arguably under increased threat due to their requirement for specific fungal symbionts. This study characterises the fungi associated with Aerangis ellisii, a lithophytic orchid from a site in the Central Highlands of Madagascar. Culturable OMF isolated from spontaneous protocorms of this species from the wild were used for seed germination. In vitro germination and seedling development of A. ellisii were achieved with fungi derived from A. ellisii and an isolate from a different Aerangis species 30 km away. The significance of these findings and their importance to conservation strategies for this species and other Aerangis spp. is discussed. These results have important implications for the conservation of A. ellisii populations in Madagascar

    Mitochondrial Control Region and microsatellite analyses on harbour porpoise (Phocoena phocoena) unravel population differentiation in the Baltic Sea and adjacent waters

    Get PDF
    The population status of the harbour porpoise (Phocoena phocoena) in the Baltic area has been a continuous matter of debate. Here we present the by far most comprehensive genetic population structure assessment to date for this region, both with regard to geographic coverage and sample size: 497 porpoise samples from North Sea, Skagerrak, Kattegat, Belt Sea, and Inner Baltic Sea were sequenced at the mitochondrial Control Region and 305 of these specimens were typed at 15 polymorphic microsatellite loci. Samples were stratified according to sample type (stranding vs. by-caught), sex, and season (breeding vs. non-breeding season). Our data provide ample evidence for a population split between the Skagerrak and the Belt Sea, with a transition zone in the Kattegat area. Among other measures, this was particularly visible in significant frequency shifts of the most abundant mitochondrial haplotypes. A particular haplotype almost absent in the North Sea was the most abundant in Belt Sea and Inner Baltic Sea. Microsatellites yielded a similar pattern (i.e., turnover in occurrence of clusters identified by STRUCTURE). Moreover, a highly significant association between microsatellite assignment and unlinked mitochondrial haplotypes further indicates a split between North Sea and Baltic porpoises. For the Inner Baltic Sea, we consistently recovered a small, but significant separation from the Belt Sea population. Despite recent arguments that separation should exceed a predefined threshold before populations shall be managed separately, we argue in favour of precautionary acknowledging the Inner Baltic porpoises as a separate management unit, which should receive particular attention, as it is threatened by various factors, in particular local fishery measures. © Springer Science+Business Media B.V. 2009

    Preliminary findings on identification of mycorrhizal fungi from diverse orchids in the Central Highlands of Madagascar

    No full text
    The Orchid flora of Madagascar is one of the most diverse with nearly 1000 orchid taxa, of which about 90 % are endemic to this biodiversity hotspot. The Itremo Massif in the Central Highlands of Madagascar with a Highland Subtropical climate range encompasses montane grassland, igneous and metamorphic rock outcrops, and gallery and tapia forests. Our study focused on identifying culturable mycorrhizae from epiphytic, lithophytic, and terrestrial orchid taxa to understand their diversity and density in a spatial matrix that is within the protected areas. We have collected both juvenile and mature roots from 41 orchid taxa for isolating their orchid mycorrhizal fungi (OMF), and to culture, identify, and store in liquid nitrogen for future studies. Twelve operational taxonomic units (OTUs), of three known orchid mycorrhizal genera, were recognized by analysis of internal transcribed spacer (ITS) sequences of 85 isolates, and, by comparing with GenBank database entries, each OTU was shown to have closely related fungi that were also found as orchid associates. Orchid and fungal diversity were greater in gallery forests and open grasslands, which is very significant for future studies and orchid conservation. As far as we know, this is the first ever report of detailed identification of mycorrhizal fungi from Madagascar. This study will help start to develop a programme for identifying fungal symbionts from this unique biodiversity hotspot, which is undergoing rapid ecosystem damage and species loss. The diversity of culturable fungal associates, their density, and distribution within the Itremo orchid hotspot areas will be discussed
    corecore