86 research outputs found
A simulation framework for reciprocal recurrent selection-based hybrid breeding under transparent and opaque simulators
Hybrid breeding is an established and effective process to improve offspring performance, while it is resource-intensive and time-consuming for the recurrent process in reality. To enable breeders and researchers to evaluate the effectiveness of competing decision-making strategies, we present a modular simulation framework for reciprocal recurrent selection-based hybrid breeding. Consisting of multiple modules such as heterotic separation, genomic prediction, and genomic selection, this simulation framework allows breeders to efficiently simulate the hybrid breeding process with multiple options of simulators and decision-making strategies. We also integrate the recently proposed concepts of transparent and opaque simulators into the framework in order to reflect the breeding process more realistically. Simulation results show the performance comparison among different breeding strategies under the two simulators
Visual-Kinematics Graph Learning for Procedure-agnostic Instrument Tip Segmentation in Robotic Surgeries
Accurate segmentation of surgical instrument tip is an important task for
enabling downstream applications in robotic surgery, such as surgical skill
assessment, tool-tissue interaction and deformation modeling, as well as
surgical autonomy. However, this task is very challenging due to the small
sizes of surgical instrument tips, and significant variance of surgical scenes
across different procedures. Although much effort has been made on visual-based
methods, existing segmentation models still suffer from low robustness thus not
usable in practice. Fortunately, kinematics data from the robotic system can
provide reliable prior for instrument location, which is consistent regardless
of different surgery types. To make use of such multi-modal information, we
propose a novel visual-kinematics graph learning framework to accurately
segment the instrument tip given various surgical procedures. Specifically, a
graph learning framework is proposed to encode relational features of
instrument parts from both image and kinematics. Next, a cross-modal
contrastive loss is designed to incorporate robust geometric prior from
kinematics to image for tip segmentation. We have conducted experiments on a
private paired visual-kinematics dataset including multiple procedures, i.e.,
prostatectomy, total mesorectal excision, fundoplication and distal gastrectomy
on cadaver, and distal gastrectomy on porcine. The leave-one-procedure-out
cross validation demonstrated that our proposed multi-modal segmentation method
significantly outperformed current image-based state-of-the-art approaches,
exceeding averagely 11.2% on Dice.Comment: Accepted to IROS 202
Learning Explicit Contact for Implicit Reconstruction of Hand-held Objects from Monocular Images
Reconstructing hand-held objects from monocular RGB images is an appealing
yet challenging task. In this task, contacts between hands and objects provide
important cues for recovering the 3D geometry of the hand-held objects. Though
recent works have employed implicit functions to achieve impressive progress,
they ignore formulating contacts in their frameworks, which results in
producing less realistic object meshes. In this work, we explore how to model
contacts in an explicit way to benefit the implicit reconstruction of hand-held
objects. Our method consists of two components: explicit contact prediction and
implicit shape reconstruction. In the first part, we propose a new subtask of
directly estimating 3D hand-object contacts from a single image. The part-level
and vertex-level graph-based transformers are cascaded and jointly learned in a
coarse-to-fine manner for more accurate contact probabilities. In the second
part, we introduce a novel method to diffuse estimated contact states from the
hand mesh surface to nearby 3D space and leverage diffused contact
probabilities to construct the implicit neural representation for the
manipulated object. Benefiting from estimating the interaction patterns between
the hand and the object, our method can reconstruct more realistic object
meshes, especially for object parts that are in contact with hands. Extensive
experiments on challenging benchmarks show that the proposed method outperforms
the current state of the arts by a great margin.Comment: 17 pages, 8 figure
Context-Dependent T-Box Transcription Factor Family: From Biology to Targeted Therapy
T-BOX factors belong to an evolutionarily conserved family of transcription factors. T-BOX factors not only play key roles in growth and development but are also involved in immunity, cancer initiation, and progression. Moreover, the same T-BOX molecule exhibits different or even opposite effects in various developmental processes and tumor microenvironments. Understanding the multiple roles of context-dependent T-BOX factors in malignancies is vital for uncovering the potential of T-BOX-targeted cancer therapy. We summarize the physiological roles of T-BOX factors in different developmental processes and their pathological roles observed when their expression is dysregulated. We also discuss their regulatory roles in tumor immune microenvironment (TIME) and the newly arising questions that remain unresolved. This review will help in systematically and comprehensively understanding the vital role of the T-BOX transcription factor family in tumor physiology, pathology, and immunity. The intention is to provide valuable information to support the development of T-BOX-targeted therapy
A novel diagnostic model for predicting immune microenvironment subclass based on costimulatory molecules in lung squamous carcinoma
There is still no ideal predictive biomarker for immunotherapy response among patients with non-small cell lung cancer. Costimulatory molecules play a role in anti-tumor immune response. Hence, they can be a potential biomarker for immunotherapy response. The current study comprehensively investigated the expression of costimulatory molecules in lung squamous carcinoma (LUSC) and identified diagnostic biomarkers for immunotherapy response. The costimulatory molecule gene expression profiles of 627 patients were obtained from the The Cancer Genome Atlas, GSE73403, and GSE37745 datasets. Patients were divided into different clusters using the k-means clustering method and were further classified into two discrepant tumor microenvironment (TIME) subclasses (hot and cold tumors) according to the immune score of the ESTIMATE algorithm. A high proportion of activated immune cells, including activated memory CD4 T cells, CD8 T cells, and M1 macrophages. Five CMGs (FAS, TNFRSF14, TNFRSF17, TNFRSF1B, and TNFSF13B) were considered as diagnostic markers using the Least Absolute Shrinkage and Selection Operator and the Support Vector Machine-Recursive Feature Elimination machine learning algorithms. Based on the five CMGs, a diagnostic nomogram for predicting individual tumor immune microenvironment subclasses in the TCGA dataset was developed, and its predictive performance was validated using GSE73403 and GSE37745 datasets. The predictive accuracy of the diagnostic nomogram was satisfactory in all three datasets. Therefore, it can be used to identify patients who may benefit more from immunotherapy
A feature optimization study based on a diabetes risk questionnaire
IntroductionThe prevalence of diabetes, a common chronic disease, has shown a gradual increase, posing substantial burdens on both society and individuals. In order to enhance the effectiveness of diabetes risk prediction questionnaires, optimize the selection of characteristic variables, and raise awareness of diabetes risk among residents, this study utilizes survey data obtained from the risk factor monitoring system of the Centers for Disease Control and Prevention in the United States.MethodsFollowing univariate analysis and meticulous screening, a more refined dataset was constructed. This dataset underwent preprocessing steps, including data distribution standardization, the application of the Synthetic Minority Oversampling Technique (SMOTE) in combination with the Round function for equilibration, and data standardization. Subsequently, machine learning (ML) techniques were employed, utilizing enumerated feature variables to evaluate the strength of the correlation among diabetes risk factors.ResultsThe research findings effectively delineated the ranking of characteristic variables that significantly influence the risk of diabetes. Obesity emerges as the most impactful factor, overshadowing other risk factors. Additionally, psychological factors, advanced age, high cholesterol, high blood pressure, alcohol abuse, coronary heart disease or myocardial infarction, mobility difficulties, and low family income exhibit correlations with diabetes risk to varying degrees.DiscussionThe experimental data in this study illustrate that, while maintaining comparable accuracy, optimization of questionnaire variables and the number of questions can significantly enhance efficiency for subsequent follow-up and precise diabetes prevention. Moreover, the research methods employed in this study offer valuable insights into studying the risk correlation of other diseases, while the research results contribute to heightened societal awareness of populations at elevated risk of diabetes
SOX on Tumors, a Comfort or a Constraint?
The sex-determining region Y (SRY)-related high-mobility group (HMG) box (SOX) family, composed of 20 transcription factors, is a conserved family with a highly homologous HMG domain. Due to their crucial role in determining cell fate, the dysregulation of SOX family members is closely associated with tumorigenesis, including tumor invasion, metastasis, proliferation, apoptosis, epithelial-mesenchymal transition, stemness and drug resistance. Despite considerable research to investigate the mechanisms and functions of the SOX family, confusion remains regarding aspects such as the role of the SOX family in tumor immune microenvironment (TIME) and contradictory impacts the SOX family exerts on tumors. This review summarizes the physiological function of the SOX family and their multiple roles in tumors, with a focus on the relationship between the SOX family and TIME, aiming to propose their potential role in cancer and promising methods for treatment
- …