432 research outputs found
A higher-order active contour model of a `gas of circles' and its application to tree crown extraction
Many image processing problems involve identifying the region in the image
domain occupied by a given entity in the scene. Automatic solution of these
problems requires models that incorporate significant prior knowledge about the
shape of the region. Many methods for including such knowledge run into
difficulties when the topology of the region is unknown a priori, for example
when the entity is composed of an unknown number of similar objects.
Higher-order active contours (HOACs) represent one method for the modelling of
non-trivial prior knowledge about shape without necessarily constraining region
topology, via the inclusion of non-local interactions between region boundary
points in the energy defining the model. The case of an unknown number of
circular objects arises in a number of domains, e.g. medical, biological,
nanotechnological, and remote sensing imagery. Regions composed of an a priori
unknown number of circles may be referred to as a `gas of circles'. In this
report, we present a HOAC model of a `gas of circles'. In order to guarantee
stable circles, we conduct a stability analysis via a functional Taylor
expansion of the HOAC energy around a circular shape. This analysis fixes one
of the model parameters in terms of the others and constrains the rest. In
conjunction with a suitable likelihood energy, we apply the model to the
extraction of tree crowns from aerial imagery, and show that the new model
outperforms other techniques
High resolution SAR-image classification
In this report we propose a novel classification algorithm for high and very high resolution synthetic aperture radar (SAR) amplitude images that combines the Markov random field approach to Bayesian image classification and a finite mixture technique for probability density function estimation. The finite mixture modeling is done by dictionary-based stochastic expectation maximization amplitude histogram estimation approach. The developed semiautomatic algorithm is extended to an important case of multi-polarized SAR by modeling the joint distributions of channels via copulas. The accuracy of the proposed algorithm is validated for the application of wet soil classification on several high resolution SAR images acquired by TerraSAR-X and COSMO-SkyMed
Modelling SAR with a Generalisation of the Rayleigh Distribution
Synthetic aperture radar (SAR) imagery has found important applications since its introduction, due to its clear advantage over optical satellite imagery, being operable in various weather conditions. However, due to the physics of radar imaging process, sar images contain unwanted artefacts in the form of a granular look which is called speckle. the assumptions of the classical SAR image generation model lead to the convention that the real and imaginary parts of the received wave follow a Gaussian law, which in turn means that the amplitude of the wave has a Rayleigh distribution- . However, some experimental data show impulsive characteristics which correspond to underlying heavy-tailed distributions, clearly non-rayleigh. some alternative distributions have been suggested such as weibull and log-normal distributions, however, in most of the cases these models are empirical, not derived with the consideration of underlying physical conditions and therefore are case specific. In this report, relaxing some of the assumptions leading to the classical rayleigh model and using the recent results in the literature on -stable distributions, we develop a generalised (heavy-tailed) version of the rayleigh model based on the assumption that the real and the imaginary parts of the received signal follows an isotropic -stable law which is suggested by a generalised form of the central limit theorem. we also derive novel methods for the estimation of the heavy-tailed rayleigh distribution parameter- s based on negative fractional-order statistics for model fitting. our experimental results show that the heavy-tailed rayleigh model can describe a wide range of data which could not be described by the classical rayleigh model
Building Extraction and Change Detection in Multitemporal Remotely Sensed Images with Multiple Birth and Death Dynamics
International audienceIn this paper we introduce a new probabilistic method which integrates building extraction with change detection in remotely sensed image pairs. A global optimization process attempts to find the optimal configuration of buildings, considering the observed data, prior knowledge, and interactions between the neighboring building parts. The accuracy is ensured by a Bayesian object model verification, meanwhile the computational cost is significantly decreased by a non-uniform stochastic object birth process, which proposes relevant objects with higher probability based on low-level image features
Building detection in a single remotely sensed image with a point process of rectangles
International audienceIn this paper we introduce a probabilistic approach of building extraction in remotely sensed images. To cope with data heterogeneity we construct a flexible hierarchical framework which can create various building appearance models from different elementary feature based modules. A global optimization process attempts to find the optimal configuration of buildings, considering simultaneously the observed data, prior knowledge, and interactions between the neighboring building parts. The proposed method is evaluated on various aerial image sets containing more than 500 buildings, and the results are matched against two state-of-the-art techniques
Improved RJMCMC point process sampler for object detection on images by simulated annealing
We first recall Geyer and Møller algorithm that allows to sample point processes using a Markov chain. We also recall Green's framework that allows to build samplers on general state spaces by imposing reversibility of the designed Markov chain.Since in our image processing applications, we are interested by sampling highly spatially correlated and non-invariant point processes, we adapt these ideas to improve the exploration ability of the algorithm. In particular, we keep the ability of generating points with non-uniform distributions, and design an updating scheme that allows to generate points in some neighborhood of other points. We first design updating schemes under Green's framework to keep (.) reversibility of the Markov chain and then show that stability properties are not loosed. Using a drift condition we prove that the Markov chain is geometrically ergodic and Harris recurrent.We finally show on experimental results that these kinds of updates are usefull and propose other improvements
SAR Amplitude Probability Density Function Estimation Based on a Generalized Gaussian Model
International audienceIn the context of remotely sensed data analysis, an important problem is the development of accurate models for the statistics of the pixel intensities. Focusing on synthetic aperture radar (SAR) data, this modeling process turns out to be a crucial task, for instance, for classification or for denoising purposes. In this paper, an innovative parametric estimation methodology for SAR amplitude data is proposed that adopts a generalized Gaussian (GG) model for the complex SAR backscattered signal. A closed-form expression for the corresponding amplitude probability density function (PDF) is derived and a specific parameter estimation algorithm is developed in order to deal with the proposed model. Specifically, the recently proposed “method-of-log-cumulants” (MoLC) is applied, which stems from the adoption of the Mellin transform (instead of the usual Fourier transform) in the computation of characteristic functions and from the corresponding generalization of the concepts of moment and cumulant. For the developed GG-based amplitude model, the resulting MoLC estimates turn out to be numerically feasible and are also analytically proved to be consistent. The proposed parametric approach was validated by using several real ERS-1, XSAR, E-SAR, and NASA/JPL airborne SAR images, and the experimental results prove that the method models the amplitude PDF better than several previously proposed parametric models for backscattering phenomena
Classical mechanics and roads detection in SPOT images
The detection of roads in satellite images has drawn a lot of attention in the last ten years. Problems of resolution, noise and image understanding are involved and one of the best method developed so far is the F* algorithm of Fischler, which is based on dynamic programming. We present herein a mathematical formalization of the F* an extension to cliques of higher order to deal with the contrast an extension to neighborhoods of higher order to take into account the curvature and a physical dynamic model to use the curvature information in a more natural and global way
Image segmentation using 4 direction line-processes
Disponible dans les fichiers attachés à ce documen
- …