1 research outputs found
circRNA landscape in dorsal root ganglia from mice with collagen antibody-induced arthritis
Circular RNAs are a novel class of RNA molecules that are covalently closed into a ring structure. They are an epigenetic regulatory mechanism, and their best-studied function is regulation of microRNA activity. As such circular RNAs may be involved in the switch from acute to chronic pain. They have previously been studied in the context of neuropathic pain models, but their importance in inflammation-induced chronic pain models is unexplored. Microarray analysis of dorsal root ganglia collected in the late phase of collagen antibody-induced arthritis (day 59) were used to elucidate the relevance of circular RNAs in the mechanical hypersensitivity caused by this model. 120 circular RNA genes were found to be significantly differentially regulated in female BALB/c mice with collagen antibody-induced arthritis. Six genes were chosen for RT-qPCR analysis in the late (day 54–60) as well as the inflammatory (day 11–12) phase of this model. This validated an increase in circNufip1 expression in the late phase of collagen antibody-induced arthritis. Additionally, it was found that circVps13 and circMicall1 are upregulated in the inflammatory phase. Interestingly, no changes were found in dorsal root ganglia from mice injected with Freund's Complete Adjuvant (day 3) nor mice with spared nerve injury (day 20), despite their similarities to inflammatory and late phase collagen antibody-induced arthritis, respectively. This study provides evidence that mild circular RNA changes occur in dorsal root ganglia of mice with collagen antibody-induced arthritis that are, bioinformatically, predicated to be involved in processes relevant to sensitization