150 research outputs found
Stability of the iterative solutions of integral equations as one phase freezing criterion
A recently proposed connection between the threshold for the stability of the
iterative solution of integral equations for the pair correlation functions of
a classical fluid and the structural instability of the corresponding real
fluid is carefully analyzed. Direct calculation of the Lyapunov exponent of the
standard iterative solution of HNC and PY integral equations for the 1D hard
rods fluid shows the same behavior observed in 3D systems. Since no phase
transition is allowed in such 1D system, our analysis shows that the proposed
one phase criterion, at least in this case, fails. We argue that the observed
proximity between the numerical and the structural instability in 3D originates
from the enhanced structure present in the fluid but, in view of the arbitrary
dependence on the iteration scheme, it seems uneasy to relate the numerical
stability analysis to a robust one-phase criterion for predicting a
thermodynamic phase transition.Comment: 11 pages, 2 figure
Optimized random phase approximations for arbitrary reference systems: extremum conditions and thermodynamic consistence
The optimized random phase approximation (ORPA) for classical liquids is
re-examined in the framework of the generating functional approach to the
integral equations. We show that the two main variants of the approximation
correspond to the addition of the same correction to two different first order
approximations of the homogeneous liquid free energy. Furthermore, we show that
it is possible to consistently use the ORPA with arbitrary reference systems
described by continuous potentials and that the same approximation is
equivalent to a particular extremum condition for the corresponding generating
functional. Finally, it is possible to enforce the thermodynamic consistence
between the thermal and the virial route to the equation of state by requiring
the global extremum condition on the generating functional.Comment: 8 pages, RevTe
Simple Fluids with Complex Phase Behavior
We find that a system of particles interacting through a simple isotropic
potential with a softened core is able to exhibit a rich phase behavior
including: a liquid-liquid phase transition in the supercooled phase, as has
been suggested for water; a gas-liquid-liquid triple point; a freezing line
with anomalous reentrant behavior. The essential ingredient leading to these
features resides in that the potential investigated gives origin to two
effective core radii.Comment: 7 pages including 3 eps figures + 1 jpeg figur
Effective Soft-Core Potentials and Mesoscopic Simulations of Binary Polymer Mixtures
Mesoscopic molecular dynamics simulations are used to determine the large
scale structure of several binary polymer mixtures of various chemical
architecture, concentration, and thermodynamic conditions. By implementing an
analytical formalism, which is based on the solution to the Ornstein-Zernike
equation, each polymer chain is mapped onto the level of a single soft colloid.
From the appropriate closure relation, the effective, soft-core potential
between coarse-grained units is obtained and used as input to our mesoscale
simulations. The potential derived in this manner is analytical and explicitly
parameter dependent, making it general and transferable to numerous systems of
interest. From computer simulations performed under various thermodynamic
conditions the structure of the polymer mixture, through pair correlation
functions, is determined over the entire miscible region of the phase diagram.
In the athermal regime mesoscale simulations exhibit quantitative agreement
with united atom simulations. Furthermore, they also provide information at
larger scales than can be attained by united atom simulations and in the
thermal regime approaching the phase transition.Comment: 19 pages, 11 figures, 3 table
Nonergodicity transitions in colloidal suspensions with attractive interactions
The colloidal gel and glass transitions are investigated using the idealized
mode coupling theory (MCT) for model systems characterized by short-range
attractive interactions. Results are presented for the adhesive hard sphere and
hard core attractive Yukawa systems. According to MCT, the former system shows
a critical glass transition concentration that increases significantly with
introduction of a weak attraction. For the latter attractive Yukawa system, MCT
predicts low temperature nonergodic states that extend to the critical and
subcritical region. Several features of the MCT nonergodicity transition in
this system agree qualitatively with experimental observations on the colloidal
gel transition, suggesting that the gel transition is caused by a low
temperature extension of the glass transition. The range of the attraction is
shown to govern the way the glass transition line traverses the phase diagram
relative to the critical point, analogous to findings for the fluid-solid
freezing transition.Comment: 11 pages, 7 figures; to be published in Phys. Rev. E (1 May 1999
Childhood craniopharyngioma: greater hypothalamic involvement before surgery is associated with higher homeostasis model insulin resistance index
<p>Abstract</p> <p>Background</p> <p>Obesity seems to be linked to the hypothalamic involvement in craniopharyngioma. We evaluated the pre-surgery relationship between the degree of this involvement on magnetic resonance imaging and insulin resistance, as evaluated by the homeostasis model insulin resistance index (HOMA). As insulin-like growth factor 1, leptin, soluble leptin receptor (sOB-R) and ghrelin may also be involved, we compared their plasma concentrations and their link to weight change.</p> <p>Methods</p> <p>27 children with craniopharyngioma were classified as either grade 0 (n = 7, no hypothalamic involvement), grade 1 (n = 8, compression without involvement), or grade 2 (n = 12, severe involvement).</p> <p>Results</p> <p>Despite having similar body mass indexes (BMI), the grade 2 patients had higher glucose, insulin and HOMA before surgery than the grade 0 (P = 0.02, <0.05 and 0.02 respectively) and 1 patients (P < 0.02 and <0.03 for both insulin and HOMA). The grade 0 (5.8 ± 4.9) and 1 (7.2 ± 5.3) patients gained significantly less weight (kg) during the year after surgery than did the grade 2 (16.3 ± 7.4) patients. The pre-surgery HOMA was positively correlated with these weight changes (P < 0.03).</p> <p>The data for the whole population before and 6–18 months after surgery showed increases in BMI (P < 0.0001), insulin (P < 0.005), and leptin (P = 0.0005), and decreases in sOB-R (P < 0.04) and ghrelin (P < 0.03).</p> <p>Conclusion</p> <p>The hypothalamic involvement by the craniopharyngioma before surgery seems to determine the degree of insulin resistance, regardless of the BMI. The pre-surgery HOMA values were correlated with the post-surgery weight gain. This suggests that obesity should be prevented by reducing inn secretion in those cases with hypothalamic involvement.</p
- …