158 research outputs found

    Secreted Frizzled-Related Protein 4 expression is positively associated with responsiveness to Cisplatin of ovarian cancer cell lines in vitro and with lower tumour grade in mucinous ovarian cancers

    Get PDF
    Ovarian cancer is one of the most lethal malignancies in women, as it is frequently detected at an advanced stage, and cancers often become refractory to chemotherapy. Evidence suggests that dysregulation of pro-apoptotic genes plays a key role in the onset of chemoresistance. The secreted Frizzled-Related Protein (sFRP) family is pro-apoptotic and also a negative modulator of the Wnt signalling cascade. Studies have demonstrated that the re-expression of sFRPs, in particular sFRP4, is associated with a better prognosis, and that experimentally induced expression results in cell death

    The Role of Secreted Frizzled Related Protein 4 (sFRP-4) in Regulating Oestradiol-Induced Growth of the MCF-7 Breast Cancer Cell Line

    Get PDF
    The Wnt signalling pathway is involved in regulating cellular proliferation and differentiation, and aberrant activation has been described in several cancers including breast. Oestradiol up regulates Wnt pathway gene expression, and thereby activates the Wnt signalling pathway. We used the oestrogen-responsive breast cancer cell line MCF-7 to examine the effects of secreted frizzled related protein 4 (sFRP-4) on oestradiol-induced growth, including gene expression of the Wnt signalling pathway genes Frizzled Receptor, Wnt-10b, and β-catenin. We demonstrate here that sFRP-4 inhibits oestradiol-induced cell growth in the MCF-7 cell line and also down regulates oestradiol-induced expression of selected Wnt signalling genes including β-catenin. We propose that sFRP-4 is a potent inhibitor of the Wnt signalling pathway and may negatively regulate oestradiol-mediated proliferation in human breast cancer cells

    RDM+PM Checklist: Towards a Measure of Your Institution’s Preparedness for the Effective Planning of Research Data Management

    Get PDF
    A review at our institution and a number of other Australian universities was conducted to identify an optimal institutional-wide approach to Research Data Management (RDM). We found, with a few notable exceptions, a lack of clear policies and processes across institutes and no harmonisation in the approaches taken. We identified limited methods in place to cater for the development of Research Data Management Plans (RDMPs) across different disciplines, project types and no identifiable business intelligence (BI) for auditing or oversight. When interviewed, many researchers were not aware of their institution’s RDM policy, whilst others did not understand how it was relevant to their research. It was also discovered that primary materials (PM), which are often directly linked to the effective management of research data, were not well covered. Additionally, it was unclear in understanding who was the data custodian responsible for overall oversight, and there was a lack of clear guidance on the roles and responsibilities of researchers and their supervisors. These findings indicate that institutions are at risk in terms of meeting regulatory requirements and managing data effectively and safely. In this paper, we outline an alternative approach focusing on RDM ‘Planning’ rather than on RDMPs themselves. We developed simple-to-understand guidance for researchers on the redeveloped RDM policy, which was implemented via an online ‘RDM+PM Checklist’ tool that guides researchers and students. Moreover, as it is a structured tool, it provides real-time business intelligence that can be used to measure how compliant the organisation is and ideally identify opportunities for continuous improvement

    A platform in the use of medicines to treat chronic hepatitis C (PLATINUM C) protocol for a prospective treatment registry of real world o

    Get PDF
    Background Safe, highly curative, short course, direct acting antiviral (DAA) therapies are now available to treat chronic hepatitis C. DAA therapy is freely available to all adults chronically infected with the hepatitis C virus (HCV) in Australia. If left untreated, hepatitis C may lead to progressive hepatic fibrosis, cirrhosis and hepatocellular carcinoma. Australia is committed to eliminating hepatitis as a public health threat by 2030 set by the World Health Organization. However, since the introduction of funded DAA treatment, uptake has been suboptimal. Australia needs improved strategies for testing, treatment uptake and treatment completion to address the persisting hepatitis C public health problem. PLATINUM C is a HCV treatment registry and research platform for assessing the comparative effectiveness of alternative interventions for achieving virological cure. Methods PLATINUM C will prospectively enrol people with active HCV infection confirmed by recent detection of HCV ribonucleic acid (RNA) in blood. Those enrolled will agree to allow standardised collection of demographic, lifestyle, treatment, virological outcome and other relevant clinical data to better inform the future management of HCV infection. The primary outcome is virological cure evidenced by sustained virological response (SVR), which is defined as a negative HCV PCR result 6 to 18 months after initial prescription of DAA therapy and no less than 12 weeks after the completion of treatment. Study participants will be invited to opt-in to medication adherence monitoring and quality of life assessments using validated self-reported instruments (EQ-5D-5L). Discussion PLATINUM C is a treatment registry and platform for nesting pragmatic trials. Data collected will inform the design, development and implementation of pragmatic trials. The digital infrastructure, study procedures and governing systems established by the registry will allow PLATINUM C to support a wider research platform in the management of hepatitis C in primary care. Trial registration The trial is registered with the Australia and New Zealand Clinical Trials Register (ACTRN12619000023156). Date of registration: 10/01/2019

    The expression of RUNX3 in colorectal cancer is associated with disease stage and patient outcome

    Get PDF
    RUNX3 is believed to have tumour suppressor properties in several cancer types. Inactivation of RUNX3 has been shown to occur by methylation-induced transcriptional silencing and by mislocalization of the protein to the cytoplasm. The aim of this study was to examine the clinical significance of RUNX3 expression in a large series of colorectal cancers using immunohistochemistry and tissue arrays. With advancing tumour stage, expression of RUNX3 in the nucleus decreased, whereas expression restricted to the cytoplasmic compartment increased. Nuclear RUNX3 expression was associated with significantly better patient survival compared to tumours in which the expression of RUNX3 was restricted to the cytoplasm (P=0.025). These results support a role for RUNX3 as a tumour suppressor in colorectal cancer

    Toward a Consistent Description of the PNC Experiments in A=18-21 Nuclei

    Get PDF
    The experimental PNC results in 18^{18}F, 19^{19}F, 21^{21}Ne and the current theoretical analysis show a discrepancy . If one interprets the small limit of the experimentally extracted PNC matrix element for 21^{21}Ne as a destructive interference between the isoscalar and the isovector contribution, then it is difficult to understand why the isovector contribution in 18^{18}F is so small while the isoscalar + isovector contribution in 19^{19}F is relatively large. In order to understand the origin of this discrepancy a comparison of the calculated PNC matrix elements was performed. It is shown that the 18^{18}F and 21^{21}Ne matrix elements contain important contributions from 3ω\hbar \omega and 4ω\hbar \omega configuration and that the (0+1)ω\hbar \omega calculations give distorted results.Comment: REVTEX, 16 pages, 1 postscriptum figure uuencoded and appende

    Estrogen receptor-α and progesterone receptor are expressed in label-retaining mammary epithelial cells that divide asymmetrically and retain their template DNA strands

    Get PDF
    INTRODUCTION: Stem cells of somatic tissues are hypothesized to protect themselves from mutation and cancer risk through a process of selective segregation of their template DNA strands during asymmetric division. Mouse mammary epithelium contains label-retaining epithelial cells that divide asymmetrically and retain their template DNA. METHOD: Immunohistochemistry was used in murine mammary glands that had been labeled with [(3)H]thymidine during allometric growth to investigate the co-expression of DNA label retention and estrogen receptor (ER)-α or progesterone receptor (PR). Using the same methods, we investigated the co-localization of [(3)H]thymidine and ER-α or PR in mammary tissue from mice that had received treatment with estrogen, progesterone, and prolactin subsequent to a long chase period to identify label-retaining cells. RESULTS: Label-retaining epithelial cells (LRECs) comprised approximately 2.0% of the entire mammary epithelium. ER-α-positive and PR-positive cells represented about 30–40% of the LREC subpopulation. Administration of estrogen, progesterone, and prolactin altered the percentage of LRECs expressing ER-α. CONCLUSION: The results presented here support the premise that there is a subpopulation of LRECs in the murine mammary gland that is positive for ER-α and/or PR. This suggests that certain mammary LRECs (potentially stem cells) remain stably positive for these receptors, raising the possibility that LRECs comprise a hierarchy of asymmetrically cycling mammary stem/progenitor cells that are distinguished by the presence or absence of nuclear steroid receptor expression

    Estrogen regulation of mammary gland development and breast cancer: amphiregulin takes center stage

    Get PDF
    Estrogen-mediated proliferation is fundamental to normal mammary gland development. Recent studies have demonstrated that amphiregulin is a critical paracrine regulator of estrogen action during ductal morphogenesis. These studies implicate a critical role for amphiregulin in mammary stem cell differentiation as well as breast cancer initiation and progression
    corecore