726 research outputs found

    The distribution of annihilation luminosities in dark matter substructure

    Full text link
    We calculate the probability distribution function (PDF) of the expected annihilation luminosities of dark matter subhalos as a function of subhalo mass and distance from the Galactic center using a semi-analytical model of halo evolution. We find that the PDF of luminosities is relatively broad, exhibiting a spread of as much as an order of magnitude at fixed subhalo mass and halo-centric distance. The luminosity PDF allows for simple construction of mock samples of gamma-ray luminous subhalos and assessment of the variance in among predicted gamma-ray signals from dark matter annihilation. Other applications include quantifying the variance among the expected luminosities of dwarf spheroidal galaxies, assessing the level at which dark matter annihilation can be a contaminant in the expected gamma-ray signal from other astrophysical sources, as well as estimating the level at which nearby subhalos can contribute to the antimatter flux.Comment: 10 pages, 5 figures. Replaced with version accepted for publication in Phys. Rev.

    Probing the Shape of the Galactic Halo with Hyper-Velocity Stars

    Full text link
    Precise proper motion measurements (sigma_mu ~ 10 mkas/yr) of the recently discovered hyper-velocity star (HVS) SDSS J090745.0+024507 would yield significant constraints on the axis ratios and orientation of a triaxial model for the Galactic halo. Triaxiality of dark matter halos is predicted by Cold Dark Matter models of galaxy formation and may be used to probe the nature of dark matter. However, unless the distance to this star is determined to better than 10%, these constraints suffer from one-dimensional degeneracies, which we quantify. We show how proper motion measurements of several HVSs could simultaneously resolve the distance degeneracies of all such stars and produce a detailed picture of the triaxial halo. Additional HVSs may be found from radial velocity surveys or from parallax/proper-motion data derived from GAIA. High-precision proper-motion measurements of these stars using the Space Interferometry Mission (SIM PlanetQuest) would substantially tighten the constraints they yield on the Galactic potential.Comment: 7 pages, matches printed versio

    Dark Matter Halos: Shapes, The Substructure Crisis, and Indirect Detection

    Full text link
    In this proceeding, we briefly review three recent results. First, we show that halos formed in simulations with gas cooling are significantly rounder than halos formed in dissipationless NN-body simulations. The increase in principle axis ratios is δ(c/a) 0.20.4\delta (c/a) ~ 0.2 - 0.4 in the inner halo and remains significant at large radii. Second, we discuss the CDM substructure crisis and demonstrate the sensitivity of the crisis to the spectrum of primordial density fluctuations on small scales. Third, we assess the ability of experiments like VERITAS and GLAST to detect γ\gamma-rays from neutralino dark matter annihilation in dark subhalos about the MW.Comment: 7 Pages, 3 Figures, Review to appear in The Proceedings of the Fifth International Workshop on the Identification of Dark Matte

    Manual de manejo conservacionista do solo para os estados do Rio Grande do Sul, Santa Catarina e Paraná.

    Get PDF
    bitstream/item/84173/1/CNPT-DOC.-1-91.pd

    Asymmetric Dark Matter May Alter the Evolution of Low-mass Stars and Brown Dwarfs

    Full text link
    We study energy transport by asymmetric dark matter in the interiors of very low-mass stars and brown dwarfs. Our motivation is to explore astrophysical signatures of asymmetric dark matter, which otherwise may not be amenable to conventional indirect dark matter searches. In viable models, the additional cooling of very-low mass stellar cores can alter stellar properties. Asymmetric dark matter with mass 4 < Mx/GeV < 10 and a spin-dependent (spin-independent) cross sections of sigma \sim 10^{-37} cm^2 (sigma \sim 10^{-40} cm^2) can increase the minimum mass of main sequence hydrogen burning, partly determining whether or not the object is a star at all. Similar dark matter candidates reduce the luminosities of low-mass stars and accelerate the cooling of brown dwarfs. Such light dark matter is of particular interest given results from the DAMA, CoGeNT, and CRESST dark matter searches. We discuss possibilities for observing dark matter effects in stars in the solar neighborhood, globular clusters, and, of particular promise, local dwarf galaxies, among other environments, as well as exploiting these effects to constrain dark matter properties.Comment: 6 Pages, 4 Figures. Accepted for Publication in Phys. Rev. D Rapid Communication

    Pixel-z: Studying Substructure and Stellar Populations in Galaxies out to z~3 using Pixel Colors I. Systematics

    Full text link
    We perform a pixel-by-pixel analysis of 467 galaxies in the GOODS-VIMOS survey to study systematic effects in extracting properties of stellar populations (age, dust, metallicity and SFR) from pixel colors using the pixel-z method. The systematics studied include the effect of the input stellar population synthesis model, passband limitations and differences between individual SED fits to pixels and global SED-fitting to a galaxy's colors. We find that with optical-only colors, the systematic errors due to differences among the models are well constrained. The largest impact on the age and SFR e-folding time estimates in the pixels arises from differences between the Maraston models and the Bruzual&Charlot models, when optical colors are used. This results in systematic differences larger than the 2{\sigma} uncertainties in over 10 percent of all pixels in the galaxy sample. The effect of restricting the available passbands is more severe. In 26 percent of pixels in the full sample, passband limitations result in systematic biases in the age estimates which are larger than the 2{\sigma} uncertainties. Systematic effects from model differences are reexamined using Near-IR colors for a subsample of 46 galaxies in the GOODS-NICMOS survey. For z > 1, the observed optical/NIR colors span the rest frame UV-optical SED, and the use of different models does not significantly bias the estimates of the stellar population parameters compared to using optical-only colors. We then illustrate how pixel-z can be applied robustly to make detailed studies of substructure in high redshift galaxies such as (a) radial gradients of age, SFR, sSFR and dust and (b) the distribution of these properties within subcomponents such as spiral arms and clumps. Finally, we show preliminary results from the CANDELS survey illustrating how the new HST/WFC3 data can be exploited to probe substructure in z~1-3 galaxies.Comment: 37 pages, 21 figures, submitted to Ap
    corecore