48 research outputs found

    The impulsive motion of a liquid resulting from a particle collision

    Get PDF
    When two particles collide in a liquid, the impulsive acceleration due to the rebound produces a pressure pulse that is transmitted through the fluid. Detailed measurements were made of the pressure pulse and the motion of the particles by generating controlled collisions with an immersed dual pendulum. The experiments were performed for a range of impact velocities, angles of incidence, and distances between the wall and the pairs of particles. The radiated fluid pressure was measured using a high-frequency-response pressure transducer, and the motion of the particles was recorded using a high-speed digital camera. The magnitude of the impulse pressure was found to scale with the particle velocity, the particle diameter and the density of the fluid. Additionally, a model is proposed to predict the impulse field in the fluid based on the impulse pressure theory. The model agrees well with the experimental measurements

    Revisiting the 1954 Suspension Experiments of R. A.Bagnold

    Get PDF
    In 1954 R. A. Bagnold published his seminal findings on the rheological properties of a liquid-solid suspension. Although this work has been cited extensively over the last fifty years, there has not been a critical review of the experiments. The purpose of this study is to examine the work and to suggest an alternative reason for the experimental findings. The concentric cylinder rheometer was designed to measure simultaneously the shear and normal forces for a wide range of solid concentrations, fluid viscosities and shear rates. As presented by Bagnold, the analysis and experiments demonstrated that the shear and normal forces depended linearly on the shear rate in the 'macroviscous' regime; as the grain-to-grain interactions increased in the 'grain-inertia' regime, the stresses depended on the square of the shear rate and were independent of the fluid viscosity. These results, however, appear to be dictated by the design of the experimental facility. In Bagnold's experiments, the height (h) of the rheometer was relatively short compared to the spacing (t) between the rotating outer and stationary inner cylinder (h/t=4.6). Since the top and bottom end plates rotated with the outer cylinder, the flow contained two axisymmetric counter-rotating cells in which flow moved outward along the end plates and inward through the central region of the annulus. At higher Reynolds numbers, these cells contributed significantly to the measured torque, as demonstrated by comparing Bagnold's pure-fluid measurements with studies on laminar-to-turbulent transitions that pre-date the 1954 study. By accounting for the torque along the end walls, Bagnold's shear stress measurements can be estimated by modelling the liquid-solid mixture as a Newtonian fluid with a corrected viscosity that depends on the solids concentration. An analysis of the normal stress measurements was problematic because the gross measurements were not reported and could not be obtained

    Impedance Probe to Measure Local Gas Volume Fraction and Bubble Velocity in a Bubbly Liquid

    Get PDF
    We have developed a dual impedance-based probe that can simultaneously measure the bubble velocity and the gas volume fraction in length scales comparable to the bubble diameter. The accurate determination of the profiles is very important for comparisons with existing theories that describe the rheological behavior of bubbly liquids. The gas volume fraction is determined by the residence time of bubble within the measuring volume of the probe. We have found that the details of the bubble-probe interactions must be taken into account to obtain an accurate measure of the gas volume fraction at a point. We are able to predict the apparent nonlinear behavior of the gas volume fraction measurement at large concentrations. The bubble velocity is obtained from the cross correlation of the signals of two closely spaced identical probes. Performance tests and results are shown for bubble velocity and bubble concentration profiles in a gravity driven shear flow of a bubbly liquid

    Helical propulsion in shear-thinning fluids

    Get PDF
    Swimming micro-organisms often have to propel themselves in complex non-Newtonian fluids. We carry out experiments with self-propelling helical swimmers driven by an externally rotating magnetic field in shear-thinning inelastic fluids. Similarly to swimming in a Newtonian fluid, we obtain for each fluid a locomotion speed that scales linearly with the rotation frequency of the swimmer, but with a prefactor that depends on the power index of the fluid. The fluid is seen to always increase the swimming speed of the helix, up to 50 % faster, and thus the strongest of such type reported to date. The maximum relative increase is for a fluid power index of approximately 0.6. Using simple scalings, we argue that the speed increase is not due directly to the local decrease of the flow viscosity around the helical filament, but hypothesise instead that it originates from confinement-like effect due to viscosity stratification around the swimmer.This work was funded in part by the European Union (CIG grant to E.L.). R.Z. acknowledges the financial support of the Moshinsky Foundation and the PAPIIT-DGAPA-UNAM program (grant no. IN101312)

    Rodless Weissenberg effect

    Full text link
    The climbing effect of a viscoelastic fluid when stirred by a spinning rod is well documented and known as Weissenberg effect(Wei et al, 2006). This phenomenon is related to the elasticity of the fluid. We have observed that this effect can appear when the fluid is stirred without a rod. In this work, a comparison of the flow around a spinning disk for a Newtonian and a non-Newtonian liquids is presented. The flow is visualized with ink and small bubbles as fluid path tracers. For a Newtonian fluid, at the center of the spinning disk, the fluid velocity is directed towards the disk (sink flow); on the other hand, for a viscoelatic liquid, a source flow is observed since the fluid emerges from the disk. The toroidal vortices that appear on top of the disk rotate in opposite directions for the Newtonian and non-Newtonian cases. Similar observations have been reported for the classical rod climbing flow (Siginer, 1984 and Escudier, 1984). Some authors have suggested that this flow configuration can be used to determine the elastic properties of the liquid (Escuider, 1984 and Joshep, 1973)

    The impulsive motion of a liquid resulting from a particle collision

    Full text link

    Collisional Particle Pressure Measurements in Solid-Liquid Flows

    Get PDF
    Experiments were conducted to measure the collisional particle pressure in both cocurrent and countercurrent flows of liquid-solid mixtures. The collisional particle pressure, or granular pressure, is the additional pressure exerted on the containing walls of a particulate system due to the particle collisions. The present experiments involve both a liquid-fluidized bed using glass, plastic or steel spheres and a vertical gravity-driven flow using glass spheres. The particle pressure was measured using a high-frequency-response flush-mounted pressure transducer. Detailed recordings were made of many different particle collisions with the active face of this transducer. The solids fraction of the flowing mixtures was measured using an impedance volume fraction meter. Results show that the magnitude of the measured particle pressure increases from low concentrations (>10% solid volume fraction), reaches a maximum for intermediate values of solid fraction (30-40%), and decreases again for more concentrated mixtures (>40%). The measured collisional particle pressure appears to scale with the particle dynamic pressure based on the particle density and terminal velocity. Results were obtained and compared for a range of particle sizes, as well as for two different test section diameters. In addition, a detailed analysis of the collisions was performed that included the probability density functions for the collisoin duration and collision impulse. Two distinct contributions to the collisional particle pressure were identified: one contribution from direct contact of particles with the pressure transducer, and the second one resulting from particle collisions in the bulk that are transmitted through the liquid to the pressure transducer
    corecore