59 research outputs found

    The effects of tensile and compressive dwells on creep-fatigue behavior and fracture mechanism in welded joint of P92 steel

    Get PDF
    The creep-fatigue interactions on the long-term service damage of P92 welded joint were investigated on the tensile and compressive holdings with a series of applied strains, respectively. The local mechanical properties including hardness, elastic modulus and creep resistance of welded joint were uncovered using nanoindentation. The features of fracture morphology and internal defects after CF tests were studied by scanning electron mi- croscope. Based on the characteristic of microstructural evolution and the variation in local mechanical prop- erties, holding type effects of creep-fatigue interaction on the local creep behavior and fracture mechanism of the welds were systematically investigated

    Enhancement of Turbulent Convective Heat Transfer using a Microparticle Multiphase Flow

    No full text
    The turbulent heat transfer enhancement of microfluid as a heat transfer medium in a tube was investigated. Within the Reynolds number ranging from 7000 to 23,000, heat transfer, friction loss and thermal performance characteristics of graphite, Al2O3 and CuO microfluid with the particle volume fraction of 0.25%–1.0% and particle size of 5 μm have been respectively tested. The results showed that the thermal performance of microfluids was better than water. In addition, the graphite microfluid had the best turbulent convective heat transfer effect among several microfluids. To further investigate the effect of graphite particle size on thermal performance, the heat transfer characteristics of the graphite microfluid with the size of 1 μm was also tested. The results showed that the thermal performance of the particle size of 1 μm was better than that of 5 μm. Within the investigated range, the maximum value of the thermal performance of graphite microfluid was found at a 1.0% volume fraction, a Reynolds number around 7500 and a size of 1 μm. In addition, the simulation results showed that the increase of equivalent thermal conductivity of the microfluid and the turbulent kinetic energy near the tube wall, by adding the microparticles, caused the enhancement of heat transfer; therefore, the microfluid can be potentially used to enhance turbulent convective heat transfer

    Research on Residual Life Estimation Method for KMN Steel Based on Nonlinear Ultrasonic Testing

    No full text
    The testing of KMN steel bending fatigue with different cycles was carried out using a nonlinear ultrasonic detector to obtain its nonlinear coefficient. The experimental results show that the nonlinear coefficient first increases and then decreases with an increase in fatigue cycles. The relationship between the propagation of the micro-cracks inside the material and the nonlinear coefficient was researched by microscopic analysis in the dangerous position of the specimens. As the fatigue cycles increase, the microstructure of the specimen gradually deteriorates and cracks occur, which proves that nonlinear ultrasonic detection can be used to characterize the initiation of micro-cracks in the early fatigue stages of the material and that the nonlinear coefficient β of the material can be used to reflect the fatigue damage degree and fatigue life of the interior of the material. An analysis of the numerical statistics of the fatigue cracks inside the specimens was carried out, and the extreme value of fatigue cracks was calculated using the Gumbel distribution. An empirical formula for the nonlinear coefficient and crack growth size of KMN steel was established and then a method for estimating the fatigue life of KMN steel based on nonlinear ultrasonic testing was proposed

    Just-in-Time Correntropy Soft Sensor with Noisy Data for Industrial Silicon Content Prediction

    No full text
    Development of accurate data-driven quality prediction models for industrial blast furnaces encounters several challenges mainly because the collected data are nonlinear, non-Gaussian, and uneven distributed. A just-in-time correntropy-based local soft sensing approach is presented to predict the silicon content in this work. Without cumbersome efforts for outlier detection, a correntropy support vector regression (CSVR) modeling framework is proposed to deal with the soft sensor development and outlier detection simultaneously. Moreover, with a continuous updating database and a clustering strategy, a just-in-time CSVR (JCSVR) method is developed. Consequently, more accurate prediction and efficient implementations of JCSVR can be achieved. Better prediction performance of JCSVR is validated on the online silicon content prediction, compared with traditional soft sensors

    Fatigue Damage Evaluation of Compressor Blade Based on Nonlinear Ultrasonic Nondestructive Testing

    No full text
    Nonlinear ultrasonic testing is highly sensitive to micro-defects and can be used to detect hidden damage and defects inside materials. At present, most tests are carried out on specimens, and there are few nonlinear ultrasonic tests for fatigue damage of compressor blades. A vibration fatigue test was carried out on compressor blade steel KMN, and blade specimens with different damage degrees were obtained. Then, the nonlinear coefficients of blade specimens were obtained by nonlinear ultrasonic testing. The results showed that the nonlinear coefficient increased with the increase in the number of fatigue cycles in the early stage of fatigue, and then the nonlinear coefficient decreased. The microstructures were observed by scanning electron microscopy (SEM). It was proven that the nonlinear ultrasonic testing can be used for the detection of micro-cracks in the early stage of fatigue. Through the statistical analysis of the size of the micro-cracks inside the material, the empirical formula of the nonlinear coefficient β and the equivalent crack size were obtained. Combined with the β–S–N three-dimensional model, an evaluation method based on the nonlinear ultrasonic testing for the early fatigue damage of the blade was proposed

    Fatigue Life Prediction of Steam Generator Tubes by Tube Specimens with Circular Holes

    No full text
    Heat exchangers manufactured from Inconel 690 tubes are widely used for steam generators in nuclear power plants. Inconel 690 tubes have suffered failures of fatigue fracture due to flow induced vibration. It is difficult to obtain the fatigue life of the tube directly since the conventional fatigue test would potentially cause end fatigue failure due to the stress concentration at the clamp end. In this study, a thin-walled Inconel 690 tube with circular hole is designed to deduce the fatigue life of smooth tube based on the notch fatigue life prediction technology. Firstly, the local stress and strain distributions around the hole based on the finite element analysis are discussed. Local stress-strain is calculated and compared with Neuber’s ruler. Meanwhile, fatigue life tests using tube specimens with circular holes are carried out. Finally, based on the best-fitted fatigue life curve of Inconel 690 alloy, the fatigue life of tube specimen is estimated from the local strain according to Neuber’s ruler. The results show that the local stress and strain estimated by Neuber’s ruler are basically consistent with those obtained by finite element analysis. Compared with the average fatigue life of nickel-based alloy, the new predicted equivalent fatigue life of heat Inconel 690 transfer tube with a hole is higher. The Inconel 690 heat transfer tube has better fatigue performance

    Prediction of Fracture Toughness Scatter Based on Weibull Stress Using Crystal Plasticity Finite Element Method

    No full text
    A multi-scale prediction method was proposed to investigate the scatter of fracture toughness by combining the local approach (LA) to cleavage fracture and the crystal plasticity finite element method (CPFEM). The parameters in the crystal plasticity constitutive model were firstly determined by comparing the simulated stress-strain curves with tested curves for SA508-III steel. Then CT samples were modeled using the CPFEM to calculate Weibull stress. Using the calibration process of local approach, the relevant parameters of the Beremin model were obtained with m = 30 and σu = 2590 MPa. The fracture toughness was analyzed including the scatter for a given temperature, the master curve in a temperature range. The distribution of predicted fracture toughness shows good agreement with the test results. All of the tested fracture toughness value are fall in the range of 5% to 95% that precited using the proposed combined approach
    corecore