3 research outputs found

    Mesozoic–Tertiary exhumation history of the Altai Mountains, northern Xinjiang, China: New constraints from apatite fission track data

    Get PDF
    This study uses apatite fission track (FT) analysis to constrain the exhumation history of bedrock samples collected from the Altai Mountains in northern Xinjiang, China. Samples were collected as transects across the main structures related to Palaeozoic crustal accretion events. FT results and modeling identify three stages in sample cooling history spanning the Mesozoic and Tertiary. Stage one records rapid cooling to the low temperature part of the fission track partial annealing zone circa 70 ± 10 °C. Stage two, records a period of relative stability with little if any cooling taking place between 75 and 25–20 Ma suggesting the Altai region had been reduced to an area of low relief. Support for this can be found in the adjacent Junngar Basin that received little if any sediment during this interval. Final stage cooling took place in the Miocene at an accelerated rate bringing the sampled rocks to the Earth's surface. This last stage, linked to the far field effects of the Himalayan collision, most likely generated the surface uplift and relief that define the present-day Altai Mountains

    Apatite fission track constraints on the Neogene tectono-thermal history of Nimu area, southern Gangdese terrane, Tibet Plateau

    No full text
    Apatite fission track dating of five samples from Cenozoic volcanic strata in the Nimu District in the southern Gangdese Terrane exhibits single population grain ages with a single mean age and associated central ages ranging from 6.8 ± 0.6 Ma to 9.7 ± 1.2 Ma. Mean track lengths are between 12.9 ± 1.7 µm and 14.2 ± 2.3 µm with a single peak characteristic of a single thermal event. The newly documented ages coincide well with the age of high sedimentation rates in the North Tibet Basin that resulted from a 9–5 Ma compressional event. Track length modeling allows three stages to be identified in the sample cooling. The first stage (12–8 Ma) records a period of relative stability with little, if any, cooling at temperatures of 120–110°C suggesting this region had low relief. The second stage (8–2 Ma) reflects rapid cooling with temperatures decreasing from ∼110°C to surface temperatures of ∼15°C. This stage can be related to far-field effects of the Himalayan collision, which probably generated the surface uplift and relief that defines the present-day Gangdese Mountains. The mean uplift rate of this period is estimated to be 1.41–0.95 mm/y with total uplift reaching ∼5900 m. The final stage is related to surface evolution since the Pliocene
    corecore