4 research outputs found
Spatiotemporal Variation in Actual Evapotranspiration and the Influencing Factors in Ningxia from 2001 to 2020
Surface evapotranspiration (ET) is an important part of the hydrological cycle. Based on the MOD16 ET product and the data collected by meteorological stations, this study investigated, for the first time, the characteristics, variation trend and influencing factors of actual ET in Ningxia from 2001 to 2020 along temporal and spatial scales using the Theil–Sen median trend analysis, Mann–Kendall test and Hurst index, and predicted the future trend of ET. The results revealed a strong correlation between the MOD16 ET product and ET data collected at meteorological stations (r = 0.837, R2 = 0.701). Over the past 20 years, the annual ET in Ningxia showed an overall increasing trend, and the proportion of the increasing area was 96.58%. Quarterly ET varied over time, with the highest value in the third quarter and the lowest value in the second quarter. Annual ET showed a positive correlation with normalized difference vegetation index (NDVI), surface temperature and precipitation but no correlation with relative humidity. Additionally, the Hurst index revealed areas showing a persistent increase in ET, accounting for 84.91% of the total area, indicating that the future trend of ET in Ningxia is consistent with the past trend
Complementarity Characteristics of Actual and Potential Evapotranspiration and Spatiotemporal Changes in Evapotranspiration Drought Index over Ningxia in the Upper Reaches of the Yellow River in China
Based on energy balance theory, using Theil–Sen median trend analysis and the Mann–Kendall test, this research studied the applicability of the complementary theory of evapotranspiration (ET) over Ningxia in the Upper Reaches of the Yellow River with MOD16 ET product and the measured data of meteorological stations, based on which ET drought index (EDI) was proposed for the first time. Moreover, the usability of EDI was also verified and its influencing factors were analyzed. The results revealed that there was a complementary relationship between AET and PET in 91.1% of the area in Ningxia, including strictly complementary and asymmetrically complementary relationships in 69.2% and 21.9% of the total area, respectively. EDI ranged from 0 to 1 and was useful to accurately reflect the degree of drought of the study area on the annual and monthly scales. From 2001 to 2020, the average annual EDI was 0.66, and the smallest monthly EDI was in January and the largest was in May. EDI of different time scales had different influencing factors. Precipitation was the most influencing factor of annual EDI, but the influencing factors of monthly EDI was different over time. However, surface non-precipitation water replenishment, such as irrigation, had great impact both on annual EDI and monthly EDI. The application scope of the theory of ET complementarity was extended to the study area for the first time, and EDI was proposed and applied, which will provide a theoretical basis and empirical reference for drought research based on ET data in arid and semi-arid areas
New Acylated Phenolic Glycosides with ROS-Scavenging Activity from Psidium guajava Leaves
Reactive oxygen species and subsequent oxidative stress are reported to play important roles in chronic metabolic diseases. Plant-derived polyphenols, especially food-derived phenolics, have attracted a lot of attention due to their potential usage against oxidative stress-related diseases. The leaf of Psidium guajava (known as guava) is regarded as a good resource of polyphenols and its products are commercially available in Japan as functional foods against multiple chronic metabolism disorders. In the course of finding novel polyphenols with antioxidative activities from guava leaf, 11 acylated phenolic glycosides (1-11), including 5 new oleuropeic acid-conjugated phenolic glycosides, named guajanosides A-E (1, 2, and 5-7), along with 17 known meroterpenoides (12-28), were isolated and identified. Their structures were determined by spectroscopic data analysis, chemical degradation, and acid hydrolysis. Compounds 1, 2, and 5-11 displayed potent reactive oxygen species-scavenging activity in lipopolysaccharide-stimulated RAW 264.7 macrophage cells. Western blot revealed that compound 6 markedly increased the expression levels of nuclear factor-erythroid 2-related factor 2 (Nrf2), NAD(P)H quinone dehydrogenase 1 (NQO1), and the glutamate-cysteine ligase catalytic subunit. The current study revealed the presence of oleuropeic acid-derived phenolic glycosides in guava leaf and highlighted the potential usage of this type of phenolics against oxidative stress-related metabolic diseases via activation of the Nrf2 signaling pathway
Barringtogenol c-type triterpenoid saponins from the stem bark of Norway maple (acer platanoides)
Four new barringtogenol C-type triterpenoid saponins, namely acerplatanosides AâŠ-âŠD (1-4), along with 22 known compounds (5-26), were isolated from the stem bark of Norway maple (Acer platanoides). Their structures were elucidated on the basis of comprehensive spectroscopic analyses and chemical hydrolysis. This is the first report of triterpenoid saponins isolated from Norway maple. Compounds 1, 3, and 4 showed cytotoxicity against 4 human cancer cell lines with IC 50 values ranging from 9.4 to 39.5 μM