37 research outputs found

    Innovative Trend Analysis of Air Temperature and Precipitation in the Jinsha River Basin, China

    No full text
    Trend detection based on hydroclimatological time series is crucial for understanding climate change. In this study, the innovative trend analysis (ITA) method was applied to investigate trends in air temperature and precipitation over the Jinsha River Basin (JRB), China, from 1961 to 2016 based on 40 meteorological stations. Climatic factors series were divided into three categories according to percentile, and the hidden trends were evaluated separately. The ITA results show that annual and seasonal temperatures have significantly increased whereas the variation range of annual temperature tended to narrow. Spatial pattern analysis of the temperature indicates that high elevation areas show more increasing trends than flat areas. Furthermore, according to ITA, significant increase trends are observed in annual precipitation and “high” category of spring precipitation. The sub-basins results show a significant decreasing trend in elevation zones of ≤2000 m and an increasing trend where elevation is >2000 m. Moreover, linkage between temperature and precipitation was analyzed and the potential impact of the combined changes was demonstrated. The results of this study provide a reference for future water resources planning in the JRB and will help advance the understanding of climate change in similar areas

    Study on Multi-Objective Optimization of Sponge Facilities Combination at Urban Block Level: A Residential Complex Case Study in Nanjing, China

    No full text
    Urban block-scale sponge system design needs address how to specify the optimal approach to combine the number of areas and types of sponge facilities for diverse land conditions and sponge system design objectives, while ensuring sponge performance and economic efficiency. With the gradual application of multi-objective optimization algorithms in the design of sponge cities, multi-objective combinatorial problem solving for sponge facilities based on optimization algorithms is more accurate and efficient than traditional design methods based on the designer’s experience. This study utilizes a residential complex in Nanjing as a practical example, selects six types of typical sponge facilities to construct a multi-objective optimization combination model for sponge facilities, and employs the SPEA-2 algorithm to determine the optimal combination of sponge facility types and quantities. Finally, 186,754 combinations of sponge facilities were calculated. For the three sponge objectives of optimal performance and economy for stormwater infiltration and storage, optimal performance and economy for runoff pollution control, and optimal average overall performance for stormwater infiltration, runoff pollution control, and economy, a number of combinations of sponge types and numbers were obtained

    Study on Multi-Objective Optimization of Sponge Facilities Combination at Urban Block Level: A Residential Complex Case Study in Nanjing, China

    No full text
    Urban block-scale sponge system design needs address how to specify the optimal approach to combine the number of areas and types of sponge facilities for diverse land conditions and sponge system design objectives, while ensuring sponge performance and economic efficiency. With the gradual application of multi-objective optimization algorithms in the design of sponge cities, multi-objective combinatorial problem solving for sponge facilities based on optimization algorithms is more accurate and efficient than traditional design methods based on the designer’s experience. This study utilizes a residential complex in Nanjing as a practical example, selects six types of typical sponge facilities to construct a multi-objective optimization combination model for sponge facilities, and employs the SPEA-2 algorithm to determine the optimal combination of sponge facility types and quantities. Finally, 186,754 combinations of sponge facilities were calculated. For the three sponge objectives of optimal performance and economy for stormwater infiltration and storage, optimal performance and economy for runoff pollution control, and optimal average overall performance for stormwater infiltration, runoff pollution control, and economy, a number of combinations of sponge types and numbers were obtained

    Securing food under adverse climate and socioeconomic scenarios in Jiangsu Province, China: Critical role of human adaptation under change

    No full text
    Food security is important for human well-being worldwide. However, changing climate, population growth and shrinking land resources are threatening food security in many regions of the world. Jiangsu Province, China, is one such region. It is a major food-producing region of the country but is witnessing rapid population growth and urbanization that is putting pressure on agricultural water and land resources and threatening food security of the region. This paper interprets the nexus between regional water availability and food security in Jiangsu Province under different climate change and socio-economic scenarios of population growth and land resource availability. Climate change scenarios are generated based on historical data and Global Climate Model (GCM) products. Socio-economic scenarios are generated based on population growth and crop planted area projections. The uptake of water and nutrients are considered as two dominant biophysical processes of crop growth and food production. Complementing it is human agency, including human labor, irrigation and land-preparation machinery, which are the factors behind water and nutrient use efficiencies of crops grown. Two dominant crops are considered, rice and wheat, that contribute to 61.4% of total crops produced in the province. Results show that adaptation by human agency is necessary to ensure that food supply meets at least the demand of the province under all climate change and socio-economic scenarios. Under relatively favorable scenarios, labor could replace land-preparing machinery since the level of food production can be easily maintained with abundant water and land availability. Mechanization in agricultural production significantly increases food production under unfavorable conditions, since it improves water and nutrient use efficiencies and leads to higher crop yields. This demonstrates that human agency plays an important role in securing food under stressful scenarios of drier climate, population growth, and contraction of agricultural lands.</p

    Multi-Objective Optimal Allocation of Water Resources Based on the NSGA-2 Algorithm While Considering Intergenerational Equity: A Case Study of the Middle and Upper Reaches of Huaihe River Basin, China

    No full text
    With the rapid development of society and the economy, the demand for water resources is increasing. This, combined with the increasing competition for water resources between current and future generations, hinders the sustainable development of society. To alleviate prominent water resources problems, achieve sustainable utilization of water resources and the sustainable development of society and economy, a multi-objective optimal water resources allocation model is proposed, in which different water sources and different water departments are considered to achieve the maximum social and economic benefits of the study area on the premise of water resources sustainability. To meet the needs of future generations, the discount value is introduced to measure intergenerational equity. A case study from seven cities in the upper and middle reaches of the Huaihe River Basin is given to verify the practicality and viability of the model. The non-dominated sorting Genetic Algorithms-2(NSGA-2) was used to find optimal water resources allocation schemes in 2020 and 2050 under the condition of a hydrological drought year (inflow guarantee rate p = 75%). Compared with previous models, the intergenerational equity model considers the sustainability of water resources, has higher social and economic benefits, and ensures the fair distribution of water resources among generations. According to the results, under balanced weight, the water shortage ratio of the seven cities will decrease from 5.24% in 2050 to 1.58% in 2020, and the economic benefit will increase from 79.46(1010CNY) to 168.3(1010CNY), respectively. In addition, the discount value of economic benefit in 2050 is 80.23(1010CNY), which is still higher than that in 2020. This shows that the water resource allocation scheme can eliminate the disparity between supply and demand for water resources and achieve intergenerational equity. Therefore, the intergenerational equity model can alleviate the contradiction of water resources and realize intergenerational equity

    Decision Support Model for Ecological Operation of Reservoirs Based on Dynamic Bayesian Network

    No full text
    In this study, a model was proposed based on the sustainable boundary approach, to provide decision support for reservoir ecological operation with the dynamic Bayesian network. The proposed model was developed in four steps: (1) calculating and verifying the sustainable boundaries in combination with the ecological objectives of the study area, (2) generating the learning samples by establishing an optimal operation model and a Monte Carlo simulation model, (3) establishing and training a dynamic Bayesian network by learning the examples and (4) calculating the probability of the economic and ecological targets exceeding the set threshold from time to time with the trained dynamic Bayesian network model. Using the proposed model, the water drawing of the reservoir can be adjusted dynamically according to the probability of the economic and ecological targets exceeding the set threshold during reservoir operation. In this study, the proposed model was applied to the middle reaches of Heihe River, the effect of water supply proportion on the probability of the economic target exceeding the set threshold was analyzed, and the response of the reservoir water storage in each period to the probability of the target exceeding the set threshold was calculated. The results show that the risks can be analyzed with the proposed model. Compared with the existing studies, the proposed model provides guidance for the ecological operation of the reservoir from time to time and technical support for the formulation of reservoir operation chart. Compared with the operation model based on the designed guaranteed rate, the reservoir operation model based on uncertainty reduces the variation range of ecological flow shortage or the overflow rate and the economic loss rate by 5% and 6%, respectively. Thus, it can be seen that the decision support model based on the dynamic Bayesian network can effectively reduce the influence of water inflow and rainfall uncertainties on reservoir operation

    Multi-Objective Optimal Allocation of River Basin Water Resources under Full Probability Scenarios Considering Wet–Dry Encounters: A Case Study of Yellow River Basin

    No full text
    Wet–dry encounters between basins and regions have an important impact on the allocation of water resources. This study proposes a multi-objective allocation model for basin water resources under full probability scenarios considering wet–dry encounters (FPS-MOWAM) to solve the problem of basin water resource allocation. In the FPS-MOWAM model, the sub-regions were merged by precipitation correlation analysis. Next, the joint probability distribution of basin runoff and region precipitation was constructed using copula functions. The possible wet–dry encounter scenarios and their probabilities were then acquired. Finally, the multi-objective allocation model of water resources was constructed using the full probability scenario for wet–dry encounters in each region. The FPS-MOWAM is calculated by the NSGA-II algorithm and the optimal water resource allocation scheme was selected using the fuzzy comprehensive evaluation method. Using the Yellow River Basin as an example, the following conclusions were obtained: (1) the Yellow River Basin can be divided into four sub-regions based on precipitation correlations: Qh-Sc (Qinghai, Sichuan), Sg-Nx-Nmg (Gansu, Ningxia, Inner Mongolia), Sxq-Sxj (Shaanxi, Shanxi), and Hn-Sd (Henan, Shandong), (2) the inconsistencies in synchronous–asynchronous encounter probabilities in the Yellow River Basin were significant (the asynchronous probabilities were 0.763), whereas the asynchronous probabilities among the four regions were 0.632, 0.932, and 0.763 under the high, medium, and low flow conditions in the Yellow River Basin respectively, and (3) the allocation of water resources tends to increase with time, allocating the most during dry years. In 2035, the expected economic benefits are between 11,982.7 billion CNY and 12,499.6 billion CNY, while the expected water shortage rate is between 2.02% and 3.43%. In 2050, the expected economic benefits are between 21,291.4 billion CNY and 21,781.3 billion CNY, while the expected water shortage rate is between 1.28% and 6.05%

    Performance Evaluation of Regional Water Environment Integrated Governance: Case Study from Henan Province, China

    No full text
    The performance of the regional water environment integrated governance is affected by many factors. This study took place in Henan Province, China, as the research area, and constructed an index system through the comprehensive consideration of three target layers based on the Ecological-Social-Economic (ESE) framework. Due to advantages such as strong objectivity and operability, the improved entropy-weight technique for the order of preference by similarity to the ideal solution (TOPSIS) model can greatly overcome subjective human interference and render the evaluation results more reliable. Therefore, it was introduced to evaluate the water environment integrated governance in Henan from 2007 to 2016. By applying the obstacle degree model, the obstacle factors were then diagnosed. The results of this study show that the overall performance of the integrated governance was generally improved in Henan from 2007 to 2016. Performance levels of the three target layers exhibited different trends, of which the social and economic benefits presented a linear increase year by year, but the ecological benefits presented a fluctuating downward trend. The obstacle on the Henan water environment integrated governance mainly comes from the ecological and economic benefits index. Therefore, a series of countermeasures have been proposed as a means of improving the governance performance in Henan

    Flood Risk Analysis of Different Climatic Phenomena during Flood Season Based on Copula-Based Bayesian Network Method: A Case Study of Taihu Basin, China

    No full text
    We propose a flood risk management model for the Taihu Basin, China, that considers the spatial and temporal differences of flood risk caused by the different climatic phenomena. In terms of time, the probability distribution of climatic phenomenon occurrence time was used to divide the flood season into plum rain and the typhoon periods. In terms of space, the Taihu Basin was divided into different sub-regions by the Copula functions. Finally, we constructed a flood risk management model using the Copula-based Bayesian network to analyze the flood risk. The results showed the plum rain period occurs from June 24 to July 21 and the typhoon period from July 22 to September 22. Considering the joint distribution of sub-region precipitation and the water level of Taihu Lake, we divided the Taihu Basin into three sub-regions (P-I, P-II, and P-III) for risk analysis in the plum rain period. However, the Taihu Basin was used as a whole for flood risk analysis in the typhoon period. Risk analysis indicated a probability of 2.4%, and 0.8%, respectively, for future adverse drainage during the plum rain period and the typhoon period, the flood risk increases rapidly with the rising water level in the Taihu Lake

    Analysis of Natural Streamflow Variation and Its Influential Factors on the Yellow River from 1957 to 2010

    No full text
    In this study, variation characteristics of hydrometeorological factors were explored based on observed time-series data between 1957 and 2010 in four subregions of the Yellow River Basin. For each region, precipitation&ndash;streamflow models at annual and flood-season scales were developed to quantify the impact of annual precipitation, temperature, percentage of flood-season precipitation, and anthropogenic interference. The sensitivities of annual streamflow to these three climatic factors were then calculated using a modified elasticity coefficient model. The results presented the following: (1) Annual streamflow exhibited a negative trend in all regions; (2) The reduction of annual streamflow was mainly caused by a precipitation decrease and temperature increase for all regions before 2000, whereas the contribution of anthropogenic interference increased significantly&mdash;more than 45%, except for Tang-Tou region after 2000. The percentage of flood-season precipitation variation can also be responsible for annual streamflow reduction with a range of 7.36% (Tang-Tou) to 21.88% (Source); (3) Annual streamflow was more sensitive to annual precipitation than temperature in the humid region, and the opposite situation was observed in the arid region. The sensitivities to intra-annual climate variation increased after 2000 for all regions, and the increase was more significant in Tou-Long and Long-Hua regions
    corecore