20,511 research outputs found

    Challenges of Primary Frequency Control and Benefits of Primary Frequency Response Support from Electric Vehicles

    Get PDF
    As the integration of wind generation displaces conventional plants, system inertia provided by rotating mass declines, causing concerns over system frequency stability. This paper implements an advanced stochastic scheduling model with inertia-dependent fast frequency response requirements to investigate the challenges on the primary frequency control in the future Great Britain electricity system. The results suggest that the required volume and the associated cost of primary frequency response increase significantly along with the increased capacity of wind plants. Alternative measures (e.g. electric vehicles) have been proposed to alleviate these concerns. Therefore, this paper also analyses the benefits of primary frequency response support from electric vehicles in reducing system operation cost, wind curtailment and carbon emissions

    Compression Algorithm Based on Irregular Sequence

    Full text link
    The paper introduces a new lossless, highly robust compression algorithm that similar with LZW algorithm, yet the algorithm discards dictionary processing and uses irregular sequences with massive, random information instead. Then the paper found the ineffectiveness of the algorithm due to limited computing ability of hardware and made a few improvements to the algorithm. The algorithm is recommended to be applied in interplanetary communications between a high-compute-ability device and a low-compute-ability receiving device, whose signal would be easily interfered by cosmos rays.Comment: 4 pages, 6 figures, accepted by 2020 The 4th International Conference on Graphics and Signal Processing (ICGSP, http://www.icgsp.org/index.html), yet has not been publishe

    Possible high temperature superconductivity in Ti-doped A-Sc-Fe-As-O (A= Ca, Sr) system

    Full text link
    We report a systematic study on the effect of partial substitution of Sc3+^{3+} by Ti4+^{4+} in Sr2_{2}ScFeAsO3_{3}, Ca2_{2}ScFeAsO3_{3} and Sr3_{3}Sc2_{2}Fe2_{2}As2_{2}O5_{5} on their electrical properties. High level of doping results in an increased carrier concentration and leads to the appearance of superconductivity with the onset of Tc_{c} up to 45 K.Comment: 8 pages, 4 figures, 2 new figure

    Doping Effect of Nano-Diamond on Superconductivity and Flux Pinning in MgB2

    Full text link
    Doping effect of diamond nanoparticles on the superconducting properties of MgB2 bulk material has been studied. It is found that the superconducting transition temperature Tc of MgB2 is suppressed by the diamond-doping, however, the irreversibility field Hirr and the critical current density Jc are systematically enhanced. Microstructural analysis shows that the diamond-doped MgB2 superconductor consists of tightly-packed MgB2 nano-grains (~50-100 nm) with highly-dispersed and uniformly-distributed diamond nanoparticles (~10-20 nm) inside the grains. High density of dislocations and diamond nanoparticles may take the responsibility for the enhanced flux pinning in the diamond-doped MgB2.Comment: 16 pages, 6 figure

    Optical control and entanglement of atomic Schroedinger fields

    Full text link
    We develop a fully quantized model of a Bose-Einstein condensate driven by a far off-resonant pump laser which interacts with a single mode of an optical ring cavity. In the linear regime, the cavity mode exhibits spontaneous exponential gain correlated with the appearance of two atomic field side-modes. These side-modes and the cavity field are generated in a highly entangled state, characterized by thermal intensity fluctuations in the individual modes, but with two-mode correlation functions which violate certain classical inequalities. By injecting an initial coherent field into the optical cavity one can significantly decrease the intensity fluctuations at the expense of reducing the correlations, thus allowing for optical control over the quantum statistical properties of matter waves.Comment: 4 page

    The 13N(d,n)14O Reaction and the Astrophysical 13N(p,g)14O Reaction Rate

    Full text link
    13^{13}N(p,γp,\gamma)14^{14}O is one of the key reactions in the hot CNO cycle which occurs at stellar temperatures around T9T_9 \geq 0.1. Up to now, some uncertainties still exist for the direct capture component in this reaction, thus an independent measurement is of importance. In present work, the angular distribution of the 13^{13}N(d,nd,n)14^{14}O reaction at Ec.m.E_{\rm{c.m.}} = 8.9 MeV has been measured in inverse kinematics, for the first time. Based on the distorted wave Born approximation (DWBA) analysis, the nuclear asymptotic normalization coefficient (ANC), C1,1/214OC^{^{14}O}_{1,1/2}, for the ground state of 14^{14}O \to 13^{13}N + pp is derived to be 5.42±0.485.42 \pm 0.48 fm1/2^{-1/2}. The 13^{13}N(p,γp,\gamma)14^{14}O reaction is analyzed with the R-matrix approach, its astrophysical S-factors and reaction rates at energies of astrophysical relevance are then determined with the ANC. The implications of the present reaction rates on the evolution of novae are then discussed with the reaction network calculations.Comment: 17 pages and 8 figure

    Scaling and exact solutions for the flux creep problem in a slab superconductor

    Full text link
    The flux creep problem for a superconductor slab placed in a constant or time-dependent magnetic field is considered. Logarithmic dependence of the activation energy on the current density is assumed, U=U0 ln(J/Jc), with a field dependent Jc. The density B of the magnetic flux penetrating into the superconductor, is shown to obey a scaling law, i.e., the profiles B(x) at different times can be scaled to a function of a single variable. We found exact solution for the scaling function in some specific cases, and an approximate solution for a general case. The scaling also holds for a slab carrying transport current I resulting in a power-law V(I) with exponent p~1. When the flux fronts moving from two sides of the slab collapse at the center, the scaling is broken and p crosses over to U0/kT.Comment: RevTex, 10 pages including 6 figures, submitted to Phys.Rev.

    Delocalization and conductance quantization in one-dimensional systems

    Full text link
    We investigate the delocalization and conductance quantization in finite one-dimensional chains with only off-diagonal disorder coupled to leads. It is shown that the appearence of delocalized states at the middle of the band under correlated disorder is strongly dependent upon the even-odd parity of the number of sites in the system. In samples with inversion symmetry the conductance equals 2e2/h2e^{2}/h for odd samples, and is smaller for even parity. This result suggests that this even-odd behaviour found previously in the presence of electron correlations may be unrelated to charging effects in the sample.Comment: submitted to PR

    Quantum asymmetric cryptography with symmetric keys

    Full text link
    Based on quantum encryption, we present a new idea for quantum public-key cryptography (QPKC) and construct a whole theoretical framework of a QPKC system. We show that the quantum-mechanical nature renders it feasible and reasonable to use symmetric keys in such a scheme, which is quite different from that in conventional public-key cryptography. The security of our scheme is analyzed and some features are discussed. Furthermore, the state-estimation attack to a prior QPKC scheme is demonstrated.Comment: 8 pages, 1 figure, Revtex
    corecore