216 research outputs found

    Systematic investigation of the rotational bands in nuclei with Z≈100Z \approx 100 using a particle-number conserving method based on a cranked shell model

    Full text link
    The rotational bands in nuclei with Z≈100Z \approx 100 are investigated systematically by using a cranked shell model (CSM) with the pairing correlations treated by a particle-number conserving (PNC) method, in which the blocking effects are taken into account exactly. By fitting the experimental single-particle spectra in these nuclei, a new set of Nilsson parameters (κ\kappa and μ\mu) and deformation parameters (ε2\varepsilon_2 and ε4\varepsilon_4) are proposed. The experimental kinematic moments of inertia for the rotational bands in even-even, odd-AA and odd-odd nuclei, and the bandhead energies of the 1-quasiparticle bands in odd-AA nuclei, are reproduced quite well by the PNC-CSM calculations. By analyzing the ω\omega-dependence of the occupation probability of each cranked Nilsson orbital near the Fermi surface and the contributions of valence orbitals in each major shell to the angular momentum alignment, the upbending mechanism in this region is understood clearly.Comment: 21 pages, 24 figures, extended version of arXiv: 1101.3607 (Phys. Rev. C83, 011304R); added refs.; added Fig. 4 and discussions; Phys. Rev. C, in pres

    Nuclear superfluidity for antimagnetic rotation in 105^{105}Cd and 106^{106}Cd

    Full text link
    The effect of nuclear superfluidity on antimagnetic rotation bands in 105^{105}Cd and 106^{106}Cd are investigated by the cranked shell model with the pairing correlations and the blocking effects treated by a particle-number conserving method. The experimental moments of inertia and the reduced B(E2)B(E2) transition values are excellently reproduced. The nuclear superfluidity is essential to reproduce the experimental moments of inertia. The two-shears-like mechanism for the antimagnetic rotation is investigated by examining the shears angle, i.e., the closing of the two proton hole angular momenta, and its sensitive dependence on the nuclear superfluidity is revealed.Comment: 14 pages, 4 figure

    Deterministic Quantum Key Distribution Using Gaussian-Modulated Squeezed States

    Get PDF
    A continuous variable ping-pong scheme, which is utilized to generate deterministically private key, is proposed. The proposed scheme is implemented physically by using Gaussian-modulated squeezed states. The deterministic way, i.e., no basis reconciliation between two parties, leads a two-times efficiency comparing to the standard quantum key distribution schemes. Especially, the separate control mode does not need in the proposed scheme so that it is simpler and more available than previous ping-pong schemes. The attacker may be detected easily through the fidelity of the transmitted signal, and may not be successful in the beam splitter attack strategy.Comment: 7 pages, 4figure

    Rotation and alignment of high-jj orbitals in transfermium nuclei

    Full text link
    The structure of nuclei with Z∼100Z\sim100 is investigated systematically by the Cranked Shell Model (CSM) with pairing correlations treated by a Particle-Number Conserving (PNC) method. In the PNC method, the particle number is conserved and the Pauli blocking effects are taken into account exactly. By fitting the experimental single-particle spectra in these nuclei, a new set of Nilsson parameters (κ\kappa and μ\mu) is proposed. The experimental kinematic moments of inertia and the band-head energies are reproduced quite well by the PNC-CSM calculations. The band crossing, the effects of high-jj intruder orbitals and deformation are discussed in detail.Comment: To appear in the Proceedings of the International Nuclear Physics Conference (INPC2013), June 2-7, 2013, Florence, Ital

    Particle-number conserving analysis of rotational bands in 247,249Cm and 249Cf

    Full text link
    The recently observed high-spin rotational bands in odd-AA nuclei 247,249^{247, 249}Cm and 249^{249}Cf [Tandel \textit{et al.}, Phys. Rev. C 82 (2010) 041301R] are investigated by using the cranked shell model (CSM) with the pairing correlations treated by a particle-number conserving (PNC) method in which the blocking effects are taken into account exactly. The experimental moments of inertia and alignments and their variations with the rotational frequency ω\omega are reproduced very well by the PNC-CSM calculations. By examining the ω\omega-dependence of the occupation probability of each cranked Nilsson orbital near the Fermi surface and the contributions of valence orbitals to the angular momentum alignment in each major shell, the level crossing and upbending mechanism in each nucleus is understood clearly.Comment: 6 pages, 5 figures, to be published in Phys. Rev.

    Poly[[hemi-μ4-oxalato-hemi-μ2-oxalato-bis­(μ3-pyrazine-2-carboxyl­ato)erbium(III)silver(I)] monohydrate]

    Get PDF
    The asymmetric unit of the title complex, {[AgEr(C5H3N2O2)2(C2O4)]·H2O}n, contains one ErIII atom, one AgI atom, two pyrazine-2-carboxyl­ate (pyc) ligands, two half oxalate ligands (each lying on an inversion center) and one uncoordinated water mol­ecule. The ErIII atom is coordinated by two O atoms and two N atoms from two pyc ligands, one O atom from a third pyc ligand and four O atoms from two oxalate ligands in a distorted monocapped square-anti­prismatic geometry. The AgI atom is coordinated by two N atoms from two pyc ligands, one O atom from a third pyc ligand and one O atom from one oxalate ligand. The crystal structure exhibits a three-dimensional heterometallic polymeric network. O—H⋯O hydrogen bonding between the uncoordinated water mol­ecule and carboxyl­ate O atoms is observed
    • …
    corecore