20,620 research outputs found

    Single-particle subband structure of Quantum Cables

    Full text link
    We proposed a model of Quantum Cable in analogy to the recently synthesized coaxial nanocable structure [Suenaga et al. Science, 278, 653 (1997); Zhang et al. ibid, 281, 973 (1998)], and studied its single-electron subband structure. Our results show that the subband spectrum of Quantum Cable is different from either double-quantum-wire (DQW) structure in two-dimensional electron gas (2DEG) or single quantum cylinder. Besides the double degeneracy of subbands arisen from the non-abelian mirrow reflection symmetry, interesting quasicrossings (accidental degeneracies), anticrossings and bundlings of Quantum Cable energy subbands are observed for some structure parameters. In the extreme limit (barrier width tends to infinity), the normal degeneracy of subbands different from the DQW structure is independent on the other structure parameters.Comment: 12 pages, 9 figure

    Quantum Cable as transport spectroscopy of 1D DOS of cylindrical quantum wires

    Full text link
    We considered the proposed Quantum Cable as a kind of transport spectroscopy of one-dimensional (1D) density of states (DOS) of cylindrical quantum wires. By simultaneously detecting the direct current through the cylindrical quantum wire and the leaked tunneling current into the neighboring wire at desired temperatures, one can obtain detailed information about 1D DOS and subband structure of cylindrical quantum wires.Comment: 7 pages, 4 figures, late

    Ballistic electronic transport in Quantum Cables

    Full text link
    We studied theoretically ballistic electronic transport in a proposed mesoscopic structure - Quantum Cable. Our results demonstrated that Qauntum Cable is a unique structure for the study of mesoscopic transport. As a function of Fermi energy, Ballistic conductance exhibits interesting stepwise features. Besides the steps of one or two quantum conductance units (2e2/h2e^2/h), conductance plateaus of more than two quantum conductance units can also be expected due to the accidental degeneracies (crossings) of subbands. As structure parameters is varied, conductance width displays oscillatory properties arising from the inhomogeneous variation of energy difference betweeen adjoining transverse subbands. In the weak coupling limits, conductance steps of height 2e2/h2e^2/h becomes the first and second plateaus for the Quantum Cable of two cylinder wires with the same width.Comment: 11 pages, 5 figure

    Entanglement and spin squeezing properties for three bosons in two modes

    Full text link
    We discuss the canonical form for a pure state of three identical bosons in two modes, and classify its entanglement correlation into two types, the analogous GHZ and the W types as well known in a system of three distinguishable qubits. We have performed a detailed study of two important entanglement measures for such a system, the concurrence C\mathcal{C} and the triple entanglement measure τ\tau. We have also calculated explicitly the spin squeezing parameter ξ\xi and the result shows that the W state is the most ``anti-squeezing'' state, for which the spin squeezing parameter cannot be regarded as an entanglement measure.Comment: 7 pages, 6 figures; corrected figure sequence. Thanks to Dr. Han P

    Heavy Quark Potentials in Some Renormalization Group Revised AdS/QCD Models

    Full text link
    We construct some AdS/QCD models by the systematic procedure of GKN. These models reflect three rather different asymptotics the gauge theory beta functions approach at the infrared region, βλ2,λ3\beta\propto-\lambda^2, -\lambda^3 and βλ\beta\propto-\lambda, where λ\lambda is the 't Hooft coupling constant. We then calculate the heavy quark potentials in these models by holographic methods and find that they can more consistently fit the lattice data relative to the usual models which do not include the renormalization group improving effects. But only use the lattice QCD heavy quark potentials as constrains, we cannot distinguish which kind of infrared asymptotics is the better one.Comment: comparisons with lattice results, qualitative consideration of quantum corrections are added. (accepted by Phys. Rev. D
    corecore