32,703 research outputs found

    BsB_s Semileptonic Decays to DsD_s and DsD_s^* in Bethe-Salpeter Method

    Full text link
    Using the relativistic Bethe-Salpeter method, the electron energy spectrum and the semileptonic decay widths of Bs0Ds+νB^0_s\to D^-_s \ell^+{\nu_\ell} and Bs0Ds+νB^0_s\to D_s^{*-}\ell^+{\nu_\ell} are calculated. We obtained large branching ratios, Br(BsDseνe)=(2.85±0.35)Br(B_s\to D_se\nu_e)=(2.85\pm0.35)% and Br(BsDseνe)=(7.09±0.88)Br (B_s\to D_s^*e\nu_e)=(7.09\pm0.88)%, which can be easily detected in the future experiment.Comment: 3 pages, 3 figures

    Vortex Dynamics in Ferromagnetic Superconductors: Vortex Clusters, Domain Walls and Enhanced Viscosity

    Full text link
    We demonstrate that there is a long-range vortex-vortex attraction in ferromagnetic superconductors due to polarization of the magnetic moments. Vortex clusters are then stabilized in the ground state for low vortex densities. The motion of vortex clusters driven by the Lorentz force excites magnons. This regime becomes unstable at a threshold velocity above which domain walls are generated for slow relaxation of the magnetic moments and the vortex configuration becomes modulated. This dynamics of vortices and magnetic moments can be probed by transport measurements.Comment: 6 pages and 3 figure

    Deriving N-soliton solutions via constrained flows

    Full text link
    The soliton equations can be factorized by two commuting x- and t-constrained flows. We propose a method to derive N-soliton solutions of soliton equations directly from the x- and t-constrained flows.Comment: 8 pages, AmsTex, no figures, to be published in Journal of Physics

    Classical Poisson structures and r-matrices from constrained flows

    Full text link
    We construct the classical Poisson structure and rr-matrix for some finite dimensional integrable Hamiltonian systems obtained by constraining the flows of soliton equations in a certain way. This approach allows one to produce new kinds of classical, dynamical Yang-Baxter structures. To illustrate the method we present the rr-matrices associated with the constrained flows of the Kaup-Newell, KdV, AKNS, WKI and TG hierarchies, all generated by a 2-dimensional eigenvalue problem. Some of the obtained rr-matrices depend only on the spectral parameters, but others depend also on the dynamical variables. For consistency they have to obey a classical Yang-Baxter-type equation, possibly with dynamical extra terms.Comment: 16 pages in LaTe

    Constructing N-soliton solution for the mKdV equation through constrained flows

    Full text link
    Based on the factorization of soliton equations into two commuting integrable x- and t-constrained flows, we derive N-soliton solutions for mKdV equation via its x- and t-constrained flows. It shows that soliton solution for soliton equations can be constructed directly from the constrained flows.Comment: 10 pages, Latex, to be published in "J. Phys. A: Math. Gen.

    Experimental Implementation of a Codeword Stabilized Quantum Code

    Full text link
    A five-qubit codeword stabilized quantum code is implemented in a seven-qubit system using nuclear magnetic resonance (NMR). Our experiment implements a good nonadditive quantum code which encodes a larger Hilbert space than any stabilizer code with the same length and capable of correcting the same kind of errors. The experimentally measured quantum coherence is shown to be robust against artificially introduced errors, benchmarking the success in implementing the quantum error correction code. Given the typical decoherence time of the system, our experiment illustrates the ability of coherent control to implement complex quantum circuits for demonstrating interesting results in spin qubits for quantum computing

    Graph Concatenation for Quantum Codes

    Get PDF
    Graphs are closely related to quantum error-correcting codes: every stabilizer code is locally equivalent to a graph code, and every codeword stabilized code can be described by a graph and a classical code. For the construction of good quantum codes of relatively large block length, concatenated quantum codes and their generalizations play an important role. We develop a systematic method for constructing concatenated quantum codes based on "graph concatenation", where graphs representing the inner and outer codes are concatenated via a simple graph operation called "generalized local complementation." Our method applies to both binary and non-binary concatenated quantum codes as well as their generalizations.Comment: 26 pages, 12 figures. Figures of concatenated [[5,1,3]] and [[7,1,3]] are added. Submitted to JM
    corecore