12 research outputs found

    Large Scale Data Mining for IT Service Management

    Get PDF
    More than ever, businesses heavily rely on IT service delivery to meet their current and frequently changing business requirements. Optimizing the quality of service delivery improves customer satisfaction and continues to be a critical driver for business growth. The routine maintenance procedure plays a key function in IT service management, which typically involves problem detection, determination and resolution for the service infrastructure. Many IT Service Providers adopt partial automation for incident diagnosis and resolution where the operation of the system administrators and automation operation are intertwined. Often the system administrators\u27 roles are limited to helping triage tickets to the processing teams for problem resolving. The processing teams are responsible to perform a complex root cause analysis, providing the system statistics, event and ticket data. A large scale of system statistics, event and ticket data aggravate the burden of problem diagnosis on both the system administrators and the processing teams during routine maintenance procedures. Alleviating human efforts involved in IT service management dictates intelligent and efficient solutions to maximize the automation of routine maintenance procedures. Three research directions are identified and considered to be helpful for IT service management optimization: (1) Automatically determine problem categories according to the symptom description in a ticket; (2) Intelligently discover interesting temporal patterns from system events; (3) Instantly identify temporal dependencies among system performance statistics data. Provided with ticket, event, and system performance statistics data, the three directions can be effectively addressed with a data-driven solution. The quality of IT service delivery can be improved in an efficient and effective way. The dissertation addresses the research topics outlined above. Concretely, we design and develop data-driven solutions to help system administrators better manage the system and alleviate the human efforts involved in IT Service management, including (1) a knowledge guided hierarchical multi-label classification method for IT problem category determination based on both the symptom description in a ticket and the domain knowledge from the system administrators; (2) an efficient expectation maximization approach for temporal event pattern discovery based on a parametric model; (3) an online inference on time-varying temporal dependency discovery from large-scale time series data

    Knowledge Guided Hierarchical Multi-Label Classification Over Ticket Data

    No full text

    An Integrated Framework for Mining Temporal Logs from Fluctuating Events

    No full text

    Resolution Recommendation for Event Tickets in Service Management

    No full text

    Building Up a Robust Risk Mathematical Platform to Predict Colorectal Cancer

    No full text
    Colorectal cancer (CRC), as a result of a multistep process and under multiple factors, is one of the most common life-threatening cancers worldwide. To identify the “high risk” populations is critical for early diagnosis and improvement of overall survival rate. Of the complicated genetic and environmental factors, which group is mostly concerning colorectal carcinogenesis remains contentious. For this reason, this study collects relatively complete information of genetic variations and environmental exposure for both CRC patients and cancer-free controls; a multimethod ensemble model for CRC-risk prediction is developed by employing such big data to train and test the model. Our results demonstrate that (1) the explored genetic and environmental biomarkers are validated to connect to the CRC by biological function- or population-based evidences, (2) the model can efficiently predict the risk of CRC after parameter optimization by the big CRC-related data, and (3) our innovated heterogeneous ensemble learning model (HELM) and generalized kernel recursive maximum correntropy (GKRMC) algorithm have high prediction power. Finally, we discuss why the HELM and GKRMC can outperform the classical regression algorithms and related subjects for future study

    Applying data mining techniques to address critical process optimization needs in advanced manufacturing

    No full text
    Advanced manufacturing such as aerospace, semi-conductor, and flat display device often involves complex production processes, and generates large volume of production data. In general, the production data comes from products with different levels of quality, assembly line with complex flows and equipments, and processing craft with massive control-ling parameters. The scale and complexity of data is be-yond the analytic power of traditional IT infrastructures. To achieve better manufacturing performance, it is imperative to explore the underlying dependencies of the production data and exploit analytic insights to improve the production process. However, few research and industrial efforts have been reported on providing manufacturers with integrated data analytical solutions to reveal potentials and optimiz
    corecore