35,639 research outputs found
Separation of variables for soliton equations via their binary constrained flows
Binary constrained flows of soliton equations admitting Lax
matrices have 2N degrees of freedom, which is twice as many as degrees of
freedom in the case of mono-constrained flows. For their separation of
variables only N pairs of canonical separated variables can be introduced via
their Lax matrices by using the normal method. A new method to introduce the
other N pairs of canonical separated variables and additional separated
equations is proposed. The Jacobi inversion problems for binary constrained
flows are established. Finally, the factorization of soliton equations by two
commuting binary constrained flows and the separability of binary constrained
flows enable us to construct the Jacobi inversion problems for some soliton
hierarchies.Comment: 39 pages, Amste
Integrable dispersionless KdV hierarchy with sources
An integrable dispersionless KdV hierarchy with sources (dKdVHWS) is derived.
Lax pair equations and bi-Hamiltonian formulation for dKdVHWS are formulated.
Hodograph solution for the dispersionless KdV equation with sources (dKdVWS) is
obtained via hodograph transformation. Furthermore, the dispersionless
Gelfand-Dickey hierarchy with sources (dGDHWS) is presented.Comment: 15 pages, to be published in J. Phys. A: Math. Ge
The generalized Kupershmidt deformation for constructing new integrable systems from integrable bi-Hamiltonian systems
Based on the Kupershmidt deformation for any integrable bi-Hamiltonian
systems presented in [4], we propose the generalized Kupershmidt deformation to
construct new systems from integrable bi-Hamiltonian systems, which provides a
nonholonomic perturbation of the bi-Hamiltonian systems. The generalized
Kupershmidt deformation is conjectured to preserve integrability. The
conjecture is verified in a few representative cases: KdV equation, Boussinesq
equation, Jaulent-Miodek equation and Camassa-Holm equation. For these specific
cases, we present a general procedure to convert the generalized Kupershmidt
deformation into the integrable Rosochatius deformation of soliton equation
with self-consistent sources, then to transform it into a -type
bi-Hamiltonian system. By using this generalized Kupershmidt deformation some
new integrable systems are derived. In fact, this generalized Kupershmidt
deformation also provides a new method to construct the integrable Rosochatius
deformation of soliton equation with self-consistent sources.Comment: 21 pages, to appear in Journal of Mathematical Physic
On the Toda Lattice Equation with Self-Consistent Sources
The Toda lattice hierarchy with self-consistent sources and their Lax
representation are derived. We construct a forward Darboux transformation (FDT)
with arbitrary functions of time and a generalized forward Darboux
transformation (GFDT) for Toda lattice with self-consistent sources (TLSCS),
which can serve as a non-auto-Backlund transformation between TLSCS with
different degrees of sources. With the help of such DT, we can construct many
type of solutions to TLSCS, such as rational solution, solitons, positons,
negetons, and soliton-positons, soliton-negatons, positon-negatons etc., and
study properties and interactions of these solutions.Comment: 20 page
The Degasperis-Procesi equation with self-consistent sources
The Degasperis-Procesi equation with self-consistent sources(DPESCS) is
derived. The Lax representation and the conservation laws for DPESCS are
constructed. The peakon solution of DPESCS is obtained.Comment: 15 page
Higher Order Potential Expansion for the Continuous Limits of the Toda Hierarchy
A method for introducing the higher order terms in the potential expansion to
study the continuous limits of the Toda hierarchy is proposed in this paper.
The method ensures that the higher order terms are differential polynomials of
the lower ones and can be continued to be performed indefinitly. By introducing
the higher order terms, the fewer equations in the Toda hierarchy are needed in
the so-called recombination method to recover the KdV hierarchy. It is shown
that the Lax pairs, the Poisson tensors, and the Hamiltonians of the Toda
hierarchy tend towards the corresponding ones of the KdV hierarchy in
continuous limit.Comment: 20 pages, Latex, to be published in Journal of Physics
- …