1,153 research outputs found

    Terahertz Wave Guiding by Femtosecond Laser Filament in Air

    Full text link
    Femtosecond laser filament generates strong terahertz (THz) pulse in air. In this paper, THz pulse waveform generated by femtosecond laser filament has been experimentally investigated as a function of the length of the filament. Superluminal propagation of THz pulse has been uncovered, indicating that the filament creates a THz waveguide in air. Numerical simulation has confirmed that the waveguide is formed because of the radially non-uniform refractive index distribution inside the filament. The underlying physical mechanisms and the control techniques of this type THz pulse generation method might be revisited based on our findings. It might also potentially open a new approach for long-distance propagation of THz wave in air.Comment: 5 pages, 6 figure

    Impulsive rotational Raman scattering of N2 by a remote "air laser" in femtosecond laser filament

    Full text link
    We report on experimental realization of impulsive rotational Raman scattering from neutral nitrogen molecules in a femtosecond laser filament using an intense self-induced white-light seeding "air laser" generated during the filamentation of an 800 nm Ti: Sapphire laser in nitrogen gas. The impulsive rotational Raman fingerprint signals are observed with a maximum conversion efficiency of ~0.8%. Our observation provides a promising way of remote identification and location of chemical species in atmosphere by rotational Raman scattering of molecules.Comment: 4 pages, 4 figure

    High-brightness switchable multi-wavelength remote laser in air

    Full text link
    Remote laser in air based on amplified spontaneous emission (ASE) has produced rather well-collimated coherent beams in both backward and forward propagation directions, opening up possibilities for new remote sensing approaches. The remote ASE-based lasers were shown to enable operation either at ~391 and 337 nm using molecular nitrogen or at ~845 nm using molecular oxygen as gain medium, depending on the employed pump lasers. To date, a multi-wavelength laser in air that allows for dynamically switching the operating wavelength has not yet been achieved, although this type of laser is certainly of high importance for detecting multiple hazard gases. In this Letter, we demonstrate, for the first time to our knowledge, a harmonic-seeded switchable multi-wavelength laser in air driven by intense mid-infrared femtosecond laser pulses. Furthermore, population inversion in the multi-wavelength remote laser occurs at an ultrafast time-scale (i.e., less than ~200 fs) owing to direct formation of excited molecular nitrogen ions by strong-field ionization of inner-valence electrons, which is fundamentally different from the previously reported pumping mechanisms based either on electron recombination of ionized molecular nitrogen or on resonant two-photon excitation of atomic oxygen fragments resulting from resonant two-photon dissociation of molecular oxygen. The bright multi-wavelength laser in air opens the perspective for remote detection of multiple pollutants based on nonlinear spectroscopy.Comment: 18 pages, 5 figure

    Garnierite mineralization from a serpentinite-derived lateritic regolith, Sulawesi Island, Indonesia: Mineralogy, geochemistry and link to hydrologic flow regime

    Get PDF
    Garnierite represents a significant nickel ore in many lateritic Ni deposits worldwide. To gain a better understanding of its nature and origin, a well-developed garnierite-hosting transect from the Kolonodale area of East Sulawesi, Indonesia, has been investigated using field geology, mineralogy and geochemical data. Garnierite occurs mainly in veins in the lower saprolite of a serpentinite-derived regolith. Mineralogically, it can be determined as an intimate mixture of Ni-rich serpentine-like (lizardite-Nepouite) and talc-like (kerolite-pimelite) phases. Results of EMP analyses indicate that Ni is preferentially enriched in the talc-like phases rather than the serpentine-like phases. A sequential precipitation of mineral phases progressively enriched in Ni and Si to form garnierite during weathering is suggested. The Ni-lizardite (2.63-8.49 wt% Ni) with elevated Fe (4.02-6.44 wt %) may have been inherited from saprolite in a first instance and enriched in Ni by cation exchange processes. Newly precipitated minerals are kerolite-pimelite (7.84-23.54 wt% Ni) and then followed by Ni-free quartz. Minor amount of Nepouite (23.47-28.51 wt% Ni) occur in laths along shrinkage cracks of previously formed minerals, indicating a late stage paragenetic sequence. With emphasis on a hydrologic consideration, indicators of a preferential flow regime are identified in the garnierite-hosting regolith, including: (i) non-uniform pattern of the garnierite field occurrence, (ii) syn-weathering active nature of the garnierite-hosting structures, (iii) close relationship between the garnierite occurrence and vertical FeeMn oxides pipes as well as FeeMn oxides patched areas, and (iv) specific physico-chemical property of the garnierite location with higher organic matter concentrations but lower pH values compared to surroundings. It is proposed that the origin of garnierite is closely linked to a preferential flow of oversaturated solutions through accessible conduits in the regolith. Garnierite features as colloidal nature, high organic matter and low pH are key-parameters in metal transport and deposition

    Population Redistribution among Multiple Electronic States of Molecular Nitrogen Ions in Strong Laser Fields

    Full text link
    We carry out a combined theoretical and experimental investigation on the population distributions in the ground and excited states of tunnel ionized N2 molecules at various driver wavelengths in the near- and mid-infrared range. Our results reveal that efficient couplings (i.e., population exchanges) between the ground state and the excited states occur in strong laser fields. The couplings result in the population inversion between the ground and the excited states at the wavelengths near 800 nm, which is verified by our experiment by observing the amplification of a seed at ~391 nm. The result provides insight into the mechanism of free-space nitrogen ion lasers generated in remote air with strong femtosecond laser pulses.Comment: 18 pages, 4 figure

    Remote creation of strong and coherent emissions in air with two-color ultrafast laser pulses

    Full text link
    We experimentally demonstrate generation of strong narrow-bandwidth emissions with excellent coherent properties at ~391 nm and ~428 nm from molecular ions of nitrogen inside a femtosecond filament in air by an orthogonally polarized two-color driver field (i. e., 800 nm laser pulse and its second harmonic). The durations of the coherent emissions at 391 nm and 428 nm are measured to be ~2.4 ps and ~7.8 ps respectively, both of which are much longer than the duration of the pump and its second harmonic pulses. Furthermore, the measured temporal decay characteristics of the excited molecular systems suggest an "instantaneous" population inversion mechanism that may be achieved in molecular nitrogen ions at an ultrafast time scale comparable to the 800 nm pump pulse.Comment: 19 pages, 4 figure

    Real-time observation of dynamics in rotational molecular wave packets by use of "air laser" spectroscopy

    Full text link
    Molecular rotational spectroscopy based on strong-field-ionization-induced nitrogen laser is employed to investigate the time evolution of the rotational wave packet composed by a coherent superposition of quantum rotational states created in a field-free molecular alignment. We show that this technique uniquely allows real-time observation of the ultrafast dynamics of the individual rotational states in the rotational wavepacket. Our analysis also shows that there exist two channels of generation of the nitrogen laser, shedding new light on the population inversion mechanism behind the air laser generated by intense femtosecond laser pulses.Comment: 23 pages, 6 figure
    corecore