429 research outputs found

    UUKG: Unified Urban Knowledge Graph Dataset for Urban Spatiotemporal Prediction

    Full text link
    Accurate Urban SpatioTemporal Prediction (USTP) is of great importance to the development and operation of the smart city. As an emerging building block, multi-sourced urban data are usually integrated as urban knowledge graphs (UrbanKGs) to provide critical knowledge for urban spatiotemporal prediction models. However, existing UrbanKGs are often tailored for specific downstream prediction tasks and are not publicly available, which limits the potential advancement. This paper presents UUKG, the unified urban knowledge graph dataset for knowledge-enhanced urban spatiotemporal predictions. Specifically, we first construct UrbanKGs consisting of millions of triplets for two metropolises by connecting heterogeneous urban entities such as administrative boroughs, POIs, and road segments. Moreover, we conduct qualitative and quantitative analysis on constructed UrbanKGs and uncover diverse high-order structural patterns, such as hierarchies and cycles, that can be leveraged to benefit downstream USTP tasks. To validate and facilitate the use of UrbanKGs, we implement and evaluate 15 KG embedding methods on the KG completion task and integrate the learned KG embeddings into 9 spatiotemporal models for five different USTP tasks. The extensive experimental results not only provide benchmarks of knowledge-enhanced USTP models under different task settings but also highlight the potential of state-of-the-art high-order structure-aware UrbanKG embedding methods. We hope the proposed UUKG fosters research on urban knowledge graphs and broad smart city applications. The dataset and source code are available at https://github.com/usail-hkust/UUKG/.Comment: NeurIPS 2023 Track on Datasets and Benchmark

    Nanoscale anisotropic plastic deformation in single crystal GaN

    Get PDF
    Elasto-plastic mechanical deformation behaviors of c-plane (0001) and nonpolar GaN single crystals are studied using nanoindentation, cathodoluminescence, and transmission electron microscopy. Nanoindentation tests show that c-plane GaN is less susceptible to plastic deformation and has higher hardness and Young's modulus than the nonpolar GaN. Cathodoluminescence and transmission electron microscopy characterizations of indent-induced plastic deformation reveal that there are two primary slip systems for the c-plane GaN, while there is only one most favorable slip system for the nonplane GaN. We suggest that the anisotropic elasto-plastic mechanical properties of GaN are relative to its anisotropic plastic deformation behavior

    The interface states in gate-all-around transistors (GAAFETs)

    Full text link
    The atomic-level structural detail and the quantum effects are becoming crucial to device performance as the emerging advanced transistors, representatively GAAFETs, are scaling down towards sub-3nm nodes. However, a multiscale simulation framework based on atomistic models and ab initio quantum simulation is still absent. Here, we propose such a simulation framework by fulfilling three challenging tasks, i.e., building atomistic all-around interfaces between semiconductor and amorphous gate-oxide, conducting large-scale first-principles calculations on the interface models containing up to 2796 atoms, and finally bridging the state-of-the-art atomic level calculation to commercial TCAD. With this framework, two unnoticed origins of interface states are demonstrated, and their tunability by changing channel size, orientation and geometry is confirmed. The quantitative study of interface states and their effects on device performance explains why the nanosheet channel is preferred in industry. We believe such a bottom-up framework is necessary and promising for the accurate simulation of emerging advanced transistors

    Automatic liver vessel segmentation using 3D region growing and hybrid active contour model

    Get PDF
    This paper proposes a new automatic method for liver vessel segmentation by exploiting intensity and shape constraints of 3D vessels. The core of the proposed method is to apply two different strategies: 3D region growing facilitated by bi-Gaussian filter for thin vessel segmentation, and hybrid active contour model combined with K-means clustering for thick vessel segmentation. They are then integrated to generate final segmentation results. The proposed method is validated on abdominal computed tomography angiography (CTA) images, and obtains an average accuracy, sensitivity, specificity, Dice, Jaccard, and RMSD of 98.2%, 68.3%, 99.2%, 73.0%, 66.1%, and 2.56 mm, respectively. Experimental results show that our method is capable of segmenting complex liver vessels with more continuous and complete thin vessel details, and outperforms several existing 3D vessel segmentation algorithms

    Coseeded Schwann cells myelinate neurites from differentiated neural stem cells in neurotrophin-3-loaded PLGA carriers

    Get PDF
    Biomaterials and neurotrophic factors represent promising guidance for neural repair. In this study, we combined poly-(lactic acid-co-glycolic acid) (PLGA) conduits and neurotrophin-3 (NT-3) to generate NT-3-loaded PLGA carriers in vitro. Bioactive NT-3 was released stably and constantly from PLGA conduits for up to 4 weeks. Neural stem cells (NSCs) and Schwann cells (SCs) were coseeded into an NT-releasing scaffold system and cultured for 14 days. Immunoreactivity against Map2 showed that most of the grafted cells (>80%) were differentiated toward neurons. Double-immunostaining for synaptogenesis and myelination revealed the formation of synaptic structures and myelin sheaths in the coculture, which was also observed under electron microscope. Furthermore, under depolarizing conditions, these synapses were excitable and capable of releasing synaptic vesicles labeled with FM1-43 or FM4-64. Taken together, coseeding NSCs and SCs into NT-3-loaded PLGA carriers increased the differentiation of NSCs into neurons, developed synaptic connections, exhibited synaptic activities, and myelination of neurites by the accompanying SCs. These results provide an experimental basis that supports transplantation of functional neural construction in spinal cord injury

    Long noncoding RNA AFAP1-AS1 acts as a competing endogenous RNA of miR-423-5p to facilitate nasopharyngeal carcinoma metastasis through regulating the Rho/Rac pathway

    Get PDF
    Background: Actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1), a long noncoding RNA, is significantly highly expressed and associated with metastasis and poor prognosis in many cancers, including nasopharyngeal carcinoma (NPC). In this study, we aim to identify the role of AFAP1-AS1 acting as an oncogenic lncRNA to promote NPC metastasis. Methods: The role of AFAP1-AS1, miR-423-5p, and FOSL2 in NPC metastasis was investigated in vitro and in vivo. Bioinformatics analysis and luciferase activity assays were used to identify the interaction between AFAP1-AS1, miR-423- 5p, and FOSL2. Additionally, real-time PCR and western blotting were used to assess the function of AFAP1-AS1 acting as an oncogenic lncRNA to promote NPC progression by regulating miR-423-5p and the downstream Rho/Rac pathway. Results: In this study, we determined that AFAP1-AS1 functions as a competing endogenous RNA in NPC to regulate the Rho/Rac pathway through miR-423-5p. These interactions can mediate the expression of RAB11B, LASP1, and FOSL2 and accelerate cell migration and invasion via the Rho/Rac signaling pathway or FOSL2. AFAP1-AS1 and FOSL2 could competitively bind with miR-423-5p to regulate several molecules, including RAB11B and LASP1 of the Rho/Rac signaling pathway. AFAP1-AS1 can also regulate the expression of LASP1, which was transcriptionally regulated by FOSL2, resulting in increased migration and invasion of NPC cells via the Rho/Rac signaling pathway. Conclusions: The observations in this study identify an important role for AFAP1-AS1 as a competing endogenous RNA (ceRNA) in NPC pathogenesis and indicate that it may serve as a potential target for cancer diagnosis and treatment

    Testosterone-mediated endocrine function and TH1/TH2 cytokine balance after prenatal exposure to perfluorooctane sulfonate: by sex status

    Get PDF
    Little information exists about the evaluation of potential developmental immunotoxicity induced by perfluorooctane sulfonate (PFOS), a synthetic persistent and increasingly ubiquitous environmental contaminant. To assess potential sex-specific impacts of PFOS on immunological health in the offspring, using male and female C57BL/6 mice, pups were evaluated for developmental immunotoxic effects after maternal oral exposure to PFOS (0.1, 1.0 and 5.0 mg PFOS/kg/day) during Gestational Days 1—17. Spontaneous TH1/TH2-type cytokines, serum levels of testosterone and estradiol were evaluated in F1 pups at four and eight weeks of age. The study showed that male pups were more sensitive to the effects of PFOS than female pups. At eight weeks of age, an imbalance in TH1/TH2-type cytokines with excess TH2 cytokines (IL-4) was found only in male pups. As for hormone levels, PFOS treatment in utero significantly decreased serum testosterone levels and increased estradiol levels only in male pups, and a significant interaction between sex and PFOS was observed for serum testosterone at both four weeks of age (pinteraction = 0.0049) and eight weeks of age (pinteraction = 0.0227) and for estradiol alternation at four weeks of age (pinteraction = 0.0351). In conclusion, testosterone-mediated endocrine function may be partially involved in the TH1/TH2 imbalance induced by PFOS, and these deficits are detectable among both young and adult mice and may affect males more than females

    SUSY-Induced Top Quark FCNC Processes at Linear Colliders

    Full text link
    In the Minimal Supersymmetric Model (MSSM) the hitherto unconstrained flavor mixing between top-squark and charm-squark will induce the flavor-changing neutral-current (FCNC) interaction between top quark and charm quark, which then give rise to various processes at the next generation linear collider (NLC), i.e., the top-charm associated productions via e+e−e^+ e^-, e−γe^- \gamma and γγ\gamma \gamma collisions as well as the top quark rare decays t→cVt \to c V (V=gV=g, γ\gamma or ZZ). All these processes involve the same part of the parameter space of the MSSM. Through a comparative analysis for all these processes at the NLC, we found the best channel to probe such SUSY-induced top quark FCNC is the top-charm associated production in γγ\gamma \gamma collision, which occurs at a much higher rate than e+e−e^+ e^- or e−γe^- \gamma collision and may reach the detectable level for some part of the parameter space. Since the rates predicted by the Standard Model are far below the detectable level, the observation of such FCNC events would be a robust indirect evidence of SUSY.Comment: 12 pages, 8 figures (more refs added, discussions extended
    • …
    corecore