8 research outputs found

    Visible-light-induced trifluoromethylation of allylic alcohols

    No full text
    An organic photoredox-catalyzed dehydroxylative trifluoromethylation of allylic alcohols was developed in an environmentally benign manner. In this reaction, the readily available CF3SO2Na was selected as the trifluoromethylation reagent. The in situ generated byproduct SO2 was reutilized to activate C-OH bond, which enabled this dehydroxylative trifluoromethylation to be performed conveniently. A variety of multifunctionalized CF3-allylic compounds were obtained in high yields and excellent stereoselectivity.We gratefully acknowledge financial support from the National Natural Science Foundation of China (21702108), the Natural Science Foundation of Jiangsu Province, China (BK20160977), and the Six Talent Peaks Project in Jiangsu Province (YY-033)

    Organophotoredox-catalyzed intermolecular formal Grob fragmentation of cyclic alcohols with activated allylic acetates

    No full text
    We have developed an efficient method that employs organophotoredox-catalyzed relay Grob fragmentation to facilitate the smooth ring-opening allylation of cyclic alcohols in an environmentally friendly manner. This protocol directly incorporates a wide spectrum of cyclic alcohols and activated allylic acetates into the cross-coupling reaction, eliminating the need for metal catalysts. The process yields a variety of distally unsaturated ketones with good to excellent outcomes and stereoselectivity, while acetic acid is the sole byproduct.We gratefully acknowledge financial support from the National Natural Science Foundation of China (21702108), the Natural Science Foundation of Jiangsu Province, China (BK20211257), and the Six Talent Peaks Project in Jiangsu Province (YY-033)

    MetaTiME integrates single-cell gene expression to characterize the meta-components of the tumor immune microenvironment

    No full text
    Abstract Recent advances in single-cell RNA sequencing have shown heterogeneous cell types and gene expression states in the non-cancerous cells in tumors. The integration of multiple scRNA-seq datasets across tumors can indicate common cell types and states in the tumor microenvironment (TME). We develop a data driven framework, MetaTiME, to overcome the limitations in resolution and consistency that result from manual labelling using known gene markers. Using millions of TME single cells, MetaTiME learns meta-components that encode independent components of gene expression observed across cancer types. The meta-components are biologically interpretable as cell types, cell states, and signaling activities. By projecting onto the MetaTiME space, we provide a tool to annotate cell states and signature continuums for TME scRNA-seq data. Leveraging epigenetics data, MetaTiME reveals critical transcriptional regulators for the cell states. Overall, MetaTiME learns data-driven meta-components that depict cellular states and gene regulators for tumor immunity and cancer immunotherapy

    Species packing and the latitudinal gradient in beta-diversity

    No full text
    Acknowledgements We thank Dingliang Xing, Tak Fung, Fangliang He and Gabriel Arellano for comments on the earlier draft. We thank Alex Karolus for leading the census in the Danum Valley forest plot, and we are grateful to Mike Bernados and Bill McDonald for species identifications, to Fangliang He, Stuart Davies and Shameema Esufali for advice and training, to Qianjiangyuan National Park, the Center for Forest Science at Morton Arboretum, Fushan Research Center, Lienhuachih Research Center and Sri Lankan Forest Department for logistical support and the hundreds of fieldworkers and students who measured and mapped the trees analysed in this study. Funding. This work was financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB31000000) and National Natural Science Foundation of China (NSFC 31770478). Data collection was funded by many organizations,principally, NSFC 31470490, 31470487, 41475123, 31570426, 31570432, 31570486, 31622014, 31660130, 31670441, 31670628, 31700356, 31760141, 31870404 and 32061123003, the Southeast Asia Rain Forest Research Programme (SEARRP), National Key Basic Research Program of China (Grant No. 2014CB954100), SEARRP partners especially Yayasan Sabah, HSBC Malaysia, financial project of Heilongjiang Pro- vince (XKLY2018ZR01), National Key R&D Program of China (2016YFC1201102 and 2016YFC0502405), the Central Public-interest Scientific Institution Basal Research Fund (CAFYBB2017ZE001), CTFS Forest GEO for funding for Sinharaja forest plot, the Taiwan For- estry Bureau (92-00-2-06 and tfbm960226), the Taiwan Forestry Research Institute (93AS-2.4.2-FI-G1, 94AS-11.1.2-FI-G1, and 97AS- 7.1.1.F1-G1) and the Ministry of Science and Technology of Taiwan (NSC92-3114-B002-009) for funding the Fushan and Lienhuachih plots, Scientific Research Funds of Heilongjiang Provincial Research Institutes (CZKYF2021B006). J.C.S. considers this work a contribution to his VILLUM Investigator project ‘Biodiversity Dynamics in a Changing World’ funded by VILLUM FONDEN (grant no. 16549).Peer reviewedPostprin
    corecore