1,470 research outputs found

    1H-Pyrrole-2-carboxylic acid

    Get PDF
    In the title compound, C5H5NO2, the pyrrole ring and its carboxyl substituent are close to coplanar, with a dihedral angle of 11.7 (3)° between the planes. In the crystal structure, adjacent mol­ecules are linked by pairs of O—H⋯O hydrogen bonds to form inversion dimers. Additional N—H⋯O hydrogen bonds link these dimers into chains extending along the a axis

    1-Ethyl-1H,6H-pyrrolo[2,3-c]azepine-4,8(5H,7H)-dione

    Get PDF
    The title compound, C10H12N2O2, was synthesized by cyclization of 3-(1-ethyl­pyrrole-2-carboxamido)propanoic acid in the presence of polyphospho­ric acid and diphospho­rus pentoxide. In the crystal structure, adjacent mol­ecules are linked by N—H⋯O hydrogen bonds, forming chains extending along the b axis

    Methyl 3-[(1-butyl-1H-indol-3-yl)carbonyl­amino]propionate

    Get PDF
    In the title mol­ecule, C17H22N2O3, the mean plane of the terminal (C=O)OMe fragment and the indole plane form a dihedral angle of 78.94 (3)°. Inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains extended along the c axis. The crystal packing exhibits π–π inter­actions, indicated by the short distance of 3.472 (2) Å between the centroids of the five-membered heterocycles of neighbouring mol­ecules

    Methyl (1H-pyrrol-2-ylcarbonyl­amino)acetate

    Get PDF
    In the crystal structure of the title compound, C8H10N2O3, mol­ecules are linked by N—H⋯O hydrogen bonds, forming ribbons of centrosymmetric dimers extending along the c axis

    Heterologous SH3-p85β inhibits influenza A virus replication

    Get PDF
    Phosphatidylinositol 3-kinase (PI3K)/Akt signalling pathway can support the replication of influenza A virus through binding of viral NS1 protein to the Src homology 3 (SH3) domain of p85β regulatory subunit of PI3K. Here we investigated the effect of heterologously overexpressed SH3 on the replication of different influenza A virus subtypes/strains, and on the phosphorylation of Akt in the virus-infected cells. We found that heterologous SH3 reduced replication of influenza A viruses at varying degrees in a subtype/strain-dependent manner and SH3 overexpression reduced the induction of the phosphorylation of Akt in the cells infected with PR8(H1N1) and ST364(H3N2), but not with ST1233(H1N1), Ph2246(H9N2), and Qa199(H9N2). Our results suggest that interference with the NS1-p85β interaction by heterologous SH3 can be served as a useful antiviral strategy against influenza A virus infection

    Potential super-hard Osmium di-nitride with fluorite structure: First-principles calculations

    Full text link
    We have performed systematic first-principles calculations on di-carbide, -nitride, -oxide and -boride of platinum and osmium with the fluorite structure. It is found that only PtN2_{2}, OsN2_{2} and OsO2_{2} are mechanically stable. In particular OsN2_{2} has the highest bulk modulus of 360.7 GPa. Both the band structure and density of states show that the new phase of OsN2_{2} is metallic. The high bulk modulus is owing to the strong covalent bonding between Os 5\textit{d} and N 2\textit{p} states and the dense packed fluorite structure.Comment: Phys. Rev. B 74,125118 (2006
    corecore