53 research outputs found

    Exploiting Exosomes for Differential Diagnosis of Multiple Myeloma and Monoclonal Gammopathy of Undetermined Significance

    Get PDF
    Multiple myeloma (MM) is a plasma cell dyscrasia characterized by a clonal plasma cell proliferation. Usually, all MM are preceded by an asymptomatic premalignant stage termed monoclonal gammopathy of undetermined significance (MGUS). Differential diagnosis requires the evidence of end-organ damage, but recently new biomarkers are emerging to help clinicians to distinguish MM from the premalignant phase. Circulating exosomes in serum seem to be a powerful tool to be analyzed for liquid biopsy, and in this chapter, we show that MM and MGUS exosomes are different in concentration, biological activity, and biochemical markers. These differences seem to be related to the free light chains (FLCs) associated with exosomes and their propathogenic properties. The cellular processing FLC-decorated exosomes and their ability to activate proinflammatory mechanisms are different in MM and MGUS patients. These elements can be evaluated to create an innovative multiparameter panel to monitor MGUS to MM switching

    On the interaction and nanoplasmonics of gold nanoparticles and lipoproteins

    Get PDF
    The extracellular space is nanostructured, populated by heterogeneous classes of nanoparticles, e.g., extracellular vesicles and lipoproteins, which “made by cells for cells'' mediate intercellular, inter-organ, cross-species, and cross-kingdom communication. However, while techniques to study ENP biology in-vitro and in-vivo are becoming available, knowledge of their colloidal and interfacial properties is poor, although much needed. This paper experimentally shows, for the first time, that the aggregation of citrate-capped gold nanoparticles (AuNPs) triggered by lipid vesicle membranes and the related characteristic redshift of the plasmonic signature also applies/extends to lipoproteins. Such interaction leads to the formation of AuNP-lipoprotein hybrid nanostructures and is sensitive to lipoprotein classes and AuNP/lipoprotein molar ratio, paving the way to further synthetic and analytical developments

    C-src Enriched Serum Microvesicles Are Generated in Malignant Plasma Cell Dyscrasia

    Get PDF
    Plasma cell dyscrasias are immunosecretory disorders that can lead to hematological malignancies such as Multiple Myeloma (MM). MM accounts for 15% of all hematologic cancers, and those diagnosed with MM typically become severely ill and have a low life expectancy. Monoclonal immunoglobulin Free Light Chains (FLC) are present in the serum and urine of many patients with plasma cell diseases. The biological differences between monoclonal FLCs, produced under malignant or benign dyscrasias, has not yet been characterized. In the present study, we show that endothelial and heart muscle cell lines internalize kappa and lambda FLCs. After internalization, FLCs are rerouted in the extracellular space via microvesicles and exosomes that can be re-internalized in contiguous cells. Only FLCs secreted from malignant B Lymphocytes were carried in Hsp70, annexin V, and c-src positive vesicles. In both MM and AL Amyloidosis patients we observed an increase in microvesicles and exosomes production. Isolated serum vesicles from MM, AL Amyloidosis and monoclonal gammopathy of undetermined significance (MGUS) patients contained FLCs. Furthermore MM and AL amyloidosis vesicles were strongly positive for Hsp70, annexin V, and c-src compared to MGUS and control patients. These are the first data implying that FLCs reroute via microvesicles in the blood stream, and also suggest a potential novel mechanism of c-src activation in plasma cell dyscrasia

    Cultured human amniocytes express hTERT, which is distributed between nucleus and cytoplasm and is secreted in extracellular vesicles

    Get PDF
    7noopenopenRadeghieri, Annalisa; Savio, Giulia; Zendrini, Andrea; Di Noto, Giuseppe; Salvi, Alessandro; Bergese, Paolo; Piovani, GiovannaRadeghieri, Annalisa; Savio, Giulia; Zendrini, Andrea; DI NOTO, Giuseppe; Salvi, Alessandro; Bergese, Paolo; Piovani, Giovann

    Active antithrombin glycoforms are selectively physiosorbed on plasma extracellular vesicles

    Get PDF
    Antithrombin (AT) is a glycoprotein produced by the liver and a principal antagonistof active clotting proteases. A deficit in AT function leads to AT qualitative deficiency,challenging to diagnose. Here we report that active AT may travel physiosorbed on thesurface of plasma extracellular vesicles (EVs), contributing to form the “EV-proteincorona.” The corona is enriched in specific AT glycoforms, thus suggesting glycosyla-tion to play a key role in AT partitioning between EVs and plasma. Differences in ATglycoform composition of the corona of EVs separated from plasma of healthy andAT qualitative deficiency-affected subjects were also noticed. This suggests deconstructing the plasma into its nanostructured components, as EVs, could suggest noveldirections to unravel pathophysiological mechanisms

    Residual matrix from different separation techniques impacts exosome biological activity

    Get PDF
    Exosomes are gaining a prominent role in research due to their intriguing biology and several therapeutic opportunities. However, their accurate purification from body fluids and detailed physicochemical characterization remain open issues. We isolated exosomes from serum of patients with Multiple Myeloma by four of the most popular purification methods and assessed the presence of residual contaminants in the preparations through an ad hoc combination of biochemical and biophysical techniques - including Western Blot, colloidal nanoplasmonics, atomic force microscopy (AFM) and scanning helium ion microscopy (HIM). The preparations obtained by iodixanol and sucrose gradients were highly pure. To the contrary, those achieved with limited processing (serial centrifugation or one step precipitation kit) resulted contaminated by a residual matrix, embedding the exosomes. The contaminated preparations showed lower ability to induce NfkB nuclear translocation in endothelial cells with respect to the pure ones, probably because the matrix prevents the interaction and fusion of the exosomes with the cell membrane. These findings suggest that exosome preparation purity must be carefully assessed since it may interfere with exosome biological activity. Contaminants can be reliably probed only by an integrated characterization approach aimed at both the molecular and the colloidal length scales

    Addressing Heterogeneity in Direct Analysis of Extracellular Vesicles and Their Analogs by Membrane Sensing Peptides as Pan‐Vesicular Affinity Probes

    Get PDF
    : Extracellular vesicles (EVs), crucial mediators of cell-to-cell communication, hold significant diagnostic potential due to their ability to concentrate protein biomarkers in bodily fluids. However, challenges in isolating EVs from biological specimens hinder their widespread use. The preferred strategy involves direct analysis, integrating isolation and analysis solutions, with immunoaffinity methods currently dominating. Yet, the heterogeneous nature of EVs poses challenges, as proposed markers may not be as universally present as thought, raising concerns about biomarker screening reliability. This issue extends to EV-mimics, where conventional methods may lack applicability. Addressing these challenges, the study reports on Membrane Sensing Peptides (MSP) as pan-vesicular affinity ligands for both EVs and their non-canonical analogs, streamlining capture and phenotyping through Single Molecule Array (SiMoA). MSP ligands enable direct analysis of circulating EVs, eliminating the need for prior isolation. Demonstrating clinical translation, MSP technology detects an EV-associated epitope signature in serum and plasma, distinguishing myocardial infarction from stable angina. Additionally, MSP allow analysis of tetraspanin-lacking Red Blood Cell-derived EVs, overcoming limitations associated with antibody-based methods. Overall, the work underlines the value of MSP as complementary tools to antibodies, advancing EV analysis for clinical diagnostics and beyond, and marking the first-ever peptide-based application in SiMoA technology

    Surface functionalization of extracellular vesicle nanoparticles with antibodies: a first study on the protein corona "variable"

    Get PDF
    To be profitably exploited in medicine, nanosized systems must be endowed with biocompatibility, targeting capability, the ability to evade the immune system, and resistance to clearance. Currently, biogenic nanoparticles, such as extracellular vesicles (EVs), are intensively investigated as the platform that naturally recapitulates these highly needed characteristics. EV native targeting properties and pharmacokinetics can be further augmented by decorating the EV surface with specific target ligands as antibodies. However, to date, studies dealing with the functionalization of the EV surface with proteins have never considered the protein corona "variable", namely the fact that extrinsic proteins may spontaneously adsorb on the EV surface, contributing to determine the surface, and in turn the biological identity of the EV. In this work, we explore and compare the two edge cases of EVs modified with the antibody Cetuximab (CTX) by chemisorption of CTX (through covalent binding via biorthogonal click-chemistry) and by formation of a physisorbed CTX corona. The results indicate that (i) no differences exist between the two formulations in terms of binding affinity imparted by molecular recognition of CTX versus its natural binding partner (epidermal growth factor receptor, EGFR), but (ii) significant differences emerge at the cellular level, where CTX-EVs prepared by click chemistry display superior binding and uptake toward target cells, very likely due to the higher robustness of the CTX anchorage

    Particle profiling of EV‐lipoprotein mixtures by AFM nanomechanical imaging

    Get PDF
    The widely overlapping physicochemical properties of lipoproteins (LPs) and extracellular vesicles (EVs) represents one of the main obstacles for the isolation and characterization of these pervasive biogenic lipid nanoparticles. We herein present the application of an atomic force microscopy (AFM)-based quantitative morphometry assay to the rapid nanomechanical screening of mixed LPs and EVs samples. The method can determine the diameter and the mechanical stiffness of hundreds of individual nanometric objects within few hours. The obtained diameters are in quantitative accord with those measured via cryo-electron microscopy (cryo-EM); the assignment of specific nanomechanical readout to each object enables the simultaneous discrimination of co-isolated EVs and LPs even if they have overlapping size distributions. EVs and all classes of LPs are shown to be characterised by specific combinations of diameter and stiffness, thus making it possible to estimate their relative abundance in EV/LP mixed samples in terms of stoichiometric ratio, surface area and volume. As a side finding, we show how the mechanical behaviour of specific LP classes is correlated to distinctive structural features revealed by cryo-EM. The described approach is label-free, single-step and relatively quick to perform. Importantly, it can be used to analyse samples which prove very challenging to assess with several established techniques due to ensemble-averaging, low sensibility to small particles, or both, thus providing a very useful tool for quickly assessing the purity of EV/LP isolates including plasma- and serum-derived preparations

    Minimal Information for Studies of Extracellular Vesicles (MISEV2023): From Basic to Advanced Approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its \u27Minimal Information for Studies of Extracellular Vesicles\u27, which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
    • 

    corecore