909 research outputs found
Coronal bright point statistics I. Lifetime, shape, and coronal co-rotation
Context. The corona of the Sun is the part of the solar atmosphere with
temperatures of over one million Kelvin, which needs to be heated internally in
order to exist. This heating mechanism remains a mystery; we see large
magnetically active regions in the photosphere lead to strong extreme UV (EUV)
emission in the corona. On much smaller scales (on the order of tens of Mm),
there are bipolar and multipolar regions that can be associated with evenly
sized coronal bright points (CBPs). Aims. Our aim was to study the properties
of CBPs in a statistical sense and to use continuous data from the SDO
spacecraft, which makes it possible to track CBPs over their whole lifetime.
Furthermore, we tested various rotation-speed profiles for CBPs in order to
find out if the lower corona is co-rotating with the photosphere. Then we
compiled a database with about 346 CBPs together with information of their
sizes, shapes, appearance and disappearance, and their visibility in the EUV
channels of the AIA instrument. We want to verify our methods with similar
previous studies. Methods. We used the high-cadence data of the largest
continuous SDO observation interval in 2015 to employ an automated tracking
algorithm for CBPs. Some of the information (e.g., the total lifetime, the
characteristic shape, and the magnetic polarities below the CBPs) still
requires human interaction. Results. In this work we present statistics on
fundamental properties of CBPs along with some comparison tables that relate,
for example, the CBP lifetime with their shape. CBPs that are visible in all
AIA channels simultaneously seem to be brighter in total and also have a
stronger heating, and hence a higher total radiation flux. We compared the EUV
emission visibility in different AIA channels with the CBP's shape and
lifetime. ... (full version see pdf)Comment: 8 pages, 11 figures, 3 table, publishe
A systematic review of treating recurrent head and neck cancer: a reintroduction of brachytherapy with or without surgery.
Purpose: To review brachytherapy use in recurrent head and neck carcinoma (RHNC) with focus on its efficacy and complication rates.
Material and methods: A literature search of PubMed, Ovid, Google Scholar, and Scopus was conducted from 1990 to 2017. Publications describing treatment of RHNC with brachytherapy with or without surgery were included. The focus of this review is on oncologic outcomes and the safety of brachytherapy in the recurrent setting.
Results: Thirty studies involving RHNC treatment with brachytherapy were reviewed. Brachytherapy as adjunctive treatment to surgical resection appears to be associated with an improved local regional control and overall survival, when compared with the published rates for re-irradiation utilizing external beam radiotherapy (RT) or brachytherapy alone. Safety data remains variable with different isotopes and dose rates with implantable brachytherapy demonstrating a tolerable side effect profile.
Conclusions: Although surgery remains a mainstay treatment for RHNC, intraoperative interstitial brachytherapy delivery as adjunctive therapy may improve the treatment outcome and may be associated with fewer complication rates as compared to reirradiation using external beam radiotherapy. Further investigations are required to elucidate the role of brachytherapy for RHNC
Tropical biomass burning smoke plume size, shape, reflectance, and age based on 2001–2009 MISR imagery of Borneo
Land clearing for crops, plantations and grazing results in anthropogenic burning of tropical forests and peatlands in Indonesia, where images of fire-generated aerosol plumes have been captured by the Multi-angle Imaging SpectroRadiometer (MISR) since 2001. Here we analyze the size, shape, optical properties, and age of distinct fire-generated plumes in Borneo from 2001–2009. The local MISR overpass at 10:30 a.m. misses the afternoon peak of Borneo fire emissions, and may preferentially sample longer plumes from persistent fires burning overnight. Typically the smoke flows with the prevailing southeasterly surface winds at 3–4 m s<sup>−1</sup>, and forms ovoid plumes whose mean length, height, and cross-plume width are 41 km, 708 m, and 27% of the plume length, respectively. 50% of these plumes have length between 24 and 50 km, height between 523 and 993 m and width between 18% and 30% of plume length. Length and cross-plume width are lognormally distributed, while height follows a normal distribution. Borneo smoke plume heights are similar to previously reported plume heights, yet Borneo plumes are on average nearly three times longer than previously studied plumes. This could be due to sampling or to more persistent fires and greater fuel loads in peatlands than in other tropical forests. Plume area (median 169 km<sup>2</sup>, with 25th and 75th percentiles at 99 km<sup>2</sup> and 304 km<sup>2</sup>, respectively) varies exponentially with length, though for most plumes a linear relation provides a good approximation. The MISR-estimated plume optical properties involve greater uncertainties than the geometric properties, and show patterns consistent with smoke aging. Optical depth increases by 15–25% in the down-plume direction, consistent with hygroscopic growth and nucleation overwhelming the effects of particle dispersion. Both particle single-scattering albedo and top-of-atmosphere reflectance peak about halfway down-plume, at values about 3% and 10% greater than at the origin, respectively. The initially oblong plumes become brighter and more circular with time, increasingly resembling smoke clouds. Wind speed does not explain a significant fraction of the variation in plume geometry. We provide a parameterization of plume shape that can help atmospheric models estimate the effects of plumes on weather, climate, and air quality. Plume age, the age of smoke furthest down-plume, is lognormally distributed with a median of 2.8 h (25th and 75th percentiles at 1.3 h and 4.0 h), different from the median ages reported in other studies. Intercomparison of our results with previous studies shows that the shape, height, optical depth, and lifetime characteristics reported for tropical biomass burning plumes on three continents are dissimilar and distinct from the same characteristics of non-tropical wildfire plumes
Do biomass burning aerosols intensify drought in equatorial Asia during El Niño?
During El Niño years, fires in tropical forests and peatlands in equatorial Asia create large regional smoke clouds. We characterized the sensitivity of these clouds to regional drought, and we investigated their effects on climate by using an atmospheric general circulation model. Satellite observations during 2000–2006 indicated that El Niño-induced regional drought led to increases in fire emissions and, consequently, increases in aerosol optical depths over Sumatra, Borneo and the surrounding ocean. Next, we used the Community Atmosphere Model (CAM) to investigate how climate responded to this forcing. We conducted two 30 year simulations in which monthly fire emissions were prescribed for either a high (El Niño, 1997) or low (La Niña, 2000) fire year using a satellite-derived time series of fire emissions. Our simulations included the direct and semi-direct effects of aerosols on the radiation budget within the model. We assessed the radiative and climate effects of anthropogenic fire by analyzing the differences between the high and low fire simulations. Fire aerosols reduced net shortwave radiation at the surface during August–October by 19.1&plusmn;12.9 W m<sup>&minus;2</sup> (10%) in a region that encompassed most of Sumatra and Borneo (90&deg; E–120&deg; E, 5&deg; S–5&deg; N). The reductions in net shortwave radiation cooled sea surface temperatures (SSTs) and land surface temperatures by 0.5&plusmn;0.3 and 0.4&plusmn;0.2 &deg;C during these months. Tropospheric heating from black carbon (BC) absorption averaged 20.5&plusmn;9.3 W m<sup>&minus;2</sup> and was balanced by a reduction in latent heating. The combination of decreased SSTs and increased atmospheric heating reduced regional precipitation by 0.9&plusmn;0.6 mm d<sup>&minus;1</sup> (10%). The vulnerability of ecosystems to fire was enhanced because the decreases in precipitation exceeded those for evapotranspiration. Together, the satellite and modeling results imply a possible positive feedback loop in which anthropogenic burning in the region intensifies drought stress during El Niño
Time delays in quasi-periodic pulsations observed during the X2.2 solar flare on 2011 February 15
We report observations of quasi-periodic pulsations (QPPs) during the X2.2
flare of 2011 February 15, observed simultaneously in several wavebands. We
focus on fluctuations on time scale 1-30 s and find different time lags between
different wavebands. During the impulsive phase, the Reuven Ramaty High Energy
Solar Spectroscopic Imager (RHESSI) channels in the range 25-100 keV lead all
the other channels. They are followed by the Nobeyama RadioPolarimeters at 9
and 17 GHz and the Extreme Ultra-Violet (EUV) channels of the Euv
SpectroPhotometer (ESP) onboard the Solar Dynamic Observatory (SDO). The
Zirconium and Aluminum filter channels of the Large Yield Radiometer (LYRA)
onboard the Project for On-Board Autonomy (PROBA2) satellite and the SXR
channel of ESP follow. The largest lags occur in observations from the
Geostationary Operational Environmental Satellite (GOES), where the channel at
1-8 {\AA} leads the 0.5-4 {\AA} channel by several seconds. The time lags
between the first and last channels is up to 9 s. We identified at least two
distinct time intervals during the flare impulsive phase, during which the QPPs
were associated with two different sources in the Nobeyama RadioHeliograph at
17 GHz. The radio as well as the hard X-ray channels showed different lags
during these two intervals. To our knowledge, this is the first time that time
lags are reported between EUV and SXR fluctuations on these time scales. We
discuss possible emission mechanisms and interpretations, including flare
electron trapping
The SWAP EUV Imaging Telescope Part I: Instrument Overview and Pre-Flight Testing
The Sun Watcher with Active Pixels and Image Processing (SWAP) is an EUV
solar telescope on board ESA's Project for Onboard Autonomy 2 (PROBA2) mission
launched on 2 November 2009. SWAP has a spectral bandpass centered on 17.4 nm
and provides images of the low solar corona over a 54x54 arcmin field-of-view
with 3.2 arcsec pixels and an imaging cadence of about two minutes. SWAP is
designed to monitor all space-weather-relevant events and features in the low
solar corona. Given the limited resources of the PROBA2 microsatellite, the
SWAP telescope is designed with various innovative technologies, including an
off-axis optical design and a CMOS-APS detector. This article provides
reference documentation for users of the SWAP image data.Comment: 26 pages, 9 figures, 1 movi
SWI/SNF regulates a transcriptional programme that induces senescence to prevent liver cancer
Oncogene-induced senescence (OIS) is a potent tumour suppressor mechanism. To identify senescence regulators relevant to cancer, we screened an shRNA library targeting genes deleted in hepatocellular carcinoma (HCC). Here, we describe how knockdown of the SWI/SNF component ARID1B prevents OIS and cooperates with RAS to induce liver tumours. ARID1B controls p16INK4a and p21CIP1a transcription but also regulates DNA damage, oxidative stress and p53 induction, suggesting that SWI/SNF uses additional mechanisms to regulate senescence. To systematically identify SWI/SNF targets regulating senescence, we carried out a focused shRNA screen. We discovered several new senescence regulators including ENTPD7, an enzyme that hydrolyses nucleotides. ENTPD7 affects oxidative stress, DNA damage and senescence. Importantly, expression of ENTPD7 or inhibition of nucleotide synthesis in ARID1B-depleted cells results in re-establishment of senescence. Our results identify novel mechanisms by which epigenetic regulators can affect tumor progression and suggest that pro-senescence therapies could be employed against SWI/SNF-mutated cancers
Links between topography, wind, deflation, lakes and dust: The case of the Bodélé Depression, Chad
The Bodélé Depression, Chad is the planet's largest single source of dust. Deflation from the Bodélé could be seen as a simple coincidence of two key prerequisites: strong surface winds and a large source of suitable sediment. But here we hypothesise that long term links between topography, winds, deflation and dust ensure the maintenance of the dust source such that these two apparently coincidental key ingredients are connected by land-atmosphere processes with topography acting as the overall controlling agent. We use a variety of observational and numerical techniques, including a regional climate model, to show that: 1) contemporary deflation from the Bodélé is delineated by topography and a surface wind stress maximum; 2) the Tibesti and Ennedi mountains play a key role in the generation of the erosive winds in the form of the Bodélé Low Level Jet (LLJ); 3) enhanced deflation from a stronger Bodélé LLJ during drier phases, for example, the Last Glacial Maximum, was probably sufficient to create the shallow lake in which diatoms lived during wetter phases, such as the Holocene pluvial. Winds may therefore have helped to create the depression in which erodible diatom material accumulated. Instead of a simple coincidence of nature, dust from the world's largest source may result from the operation of long term processes on paleo timescales which have led to ideal conditions for dust generation in the world's largest dust source. Similar processes plausibly operate in other dust hotspots in topographic depressions
Global estimates of mineral dust aerosol iron and aluminum solubility that account for particle size using diffusion-controlled and surface-area-controlled approximations
Mineral aerosol deposition is recognized as the dominant source of iron to the open ocean and the solubility of iron in the dust aerosol is highly variable, with measurements ranging from 0.01–80%. Global models have difficulty capturing the observed variations in solubility, and have ignored the solubility dependence on aerosol size. We introduce two idealized physical models to estimate the size dependence of mineral aerosol solubility: a diffusion‐controlled model and a surface‐area‐controlled model. These models produce differing time‐ and space‐varying solubility maps for aerosol Fe and Al given the dust age at deposition, size‐resolved dust entrainment fields, and the aerosol acidity. The resulting soluble iron deposition fluxes are substantially different, and more realistic, than a globally uniform solubility approximation. The surface‐area‐controlled solubility varies more than the diffusion‐controlled solubility and better captures the spatial pattern of observed solubility in the Atlantic. However, neither of these two models explains the large solubility variation observed in the Pacific. We then examine the impacts of spatially variable, size‐dependent solubility on marine biogeochemistry with the Biogeochemical Elemental Cycling (BEC) ocean model by comparing the modeled surface ocean dissolved Fe and Al with observations. The diffusion‐based variable solubility does not significantly improve the simulation of dissolved Fe relative to a 5% globally uniform solubility, while the surface‐area‐based variable solubility improves the simulation in the North Atlantic but worsens it in the Pacific and Indian Oceans
- …