44 research outputs found

    A Compact RFID Reader Antenna for UHF Near-Field and Far-Field Operations

    Get PDF
    A compact loop antenna is presented for mobile ultrahigh frequency (UHF) radio frequency identification (RFID) application. This antenna, printed on a 0.8 mm thick FR4 substrate with a small size of 31 mm × 31 mm, achieves good impedance bandwidth from 897 to 928 MHz, which covers USA RFID Band (902–928 MHz). The proposed loop configuration, with a split-ring resonator (SRR) coupled inside it, demonstrates strong and uniform magnetic field distribution in the near-field antenna region. Its linearly polarized radiation pattern provides available far-field gain. Finally, the reading capabilities of antenna are up to 56 mm for near-field and 1.05 m for far-field UHF RFID operations, respectively

    A predictive model for early death in elderly colorectal cancer patients: a population-based study

    Get PDF
    PurposeThe purpose of this study is to determine what variables contribute to the early death of elderly colorectal cancer patients (ECRC) and to generate predictive nomograms for this population.MethodsThis retrospective cohort analysis included elderly individuals (≥75 years old) diagnosed with colorectal cancer (CRC) from 2010-2015 in the Surveillance, Epidemiology, and End Result databases (SEER) databases. The external validation was conducted using a sample of the Chinese population obtained from the China-Japan Union Hospital of Jilin University. Logistic regression analyses were used to ascertain variables associated with early death and to develop nomograms. The nomograms were internally and externally validated with the help of the receiver operating characteristic curve (ROC), calibration curve, and decision curve analysis (DCA).ResultsThe SEER cohort consisted of 28,111 individuals, while the Chinese cohort contained 315 cases. Logistic regression analyses shown that race, marital status, tumor size, Grade, T stage, N stage, M stage, brain metastasis, liver metastasis, bone metastasis, surgery, chemotherapy, and radiotherapy were independent prognostic factors for all-cause and cancer-specific early death in ECRC patients; The variable of sex was only related to an increased risk of all-cause early death, whereas the factor of insurance status was solely associated with an increased risk of cancer-specific early death. Subsequently, two nomograms were devised to estimate the likelihood of all-cause and cancer-specific early death among individuals with ECRC. The nomograms exhibited robust predictive accuracy for predicting early death of ECRC patients, as evidenced by both internal and external validation.ConclusionWe developed two easy-to-use nomograms to predicting the likelihood of early death in ECRC patients, which would contribute significantly to the improvement of clinical decision-making and the formulation of personalized treatment approaches for this particular population

    A Novel Displacement and Tilt Detection Method Using Passive UHF RFID Technology

    No full text
    The displacement and tilt angle of an object are useful information for wireless monitoring applications. In this paper, a low-cost detection method based on passive radio frequency identification (RFID) technology is proposed. This method uses a standard ultrahigh-frequency (UHF) RFID reader to measure the phase variation of the tag response and detect the displacement and tilt angle of RFID tags attached to the targeted object. An accurate displacement result can be detected by the RFID system with a linearly polarized (LP) reader antenna. Based on the displacement results, an accurate tilt angle can also be detected by the RFID system with a circularly polarized (CP) reader antenna, which has been proved to have a linear relationship with the phase parameter of the tag’s backscattered wave. As far as accuracy is concerned, the mean absolute error (MAE) of displacement is less than 2 mm and the MAE of the tilt angle is less than 2.5° for an RFID system with 500 mm working range

    Determination of Holmquist–Johnson–Cook Constitutive Parameters of Coal: Laboratory Study and Numerical Simulation

    No full text
    The main sensitivity parameters of the Holmquist–Johnson–Cook constitutive model for coal were obtained from a variety of tests such as uniaxial compression, uniaxial cyclic loading, splitting and triaxial compression tests, as well as the indirect derivation equation of a briquette. The mechanical properties of briquettes under dynamic impact were investigated using a split Hopkinson pressure bar experiment. Based on the experimental measurement of the Holmquist–Johnson–Cook constitutive model, the numerical simulation of briquette was performed using ANSYS/LS-DYNA software. A comparison between experimental and simulation results verified the correctness of simulation parameters. This research concluded that the failure of briquette at different impact velocities started from an axial crack in the middle of the coal body, and the sample was swollen to some extent. By the increase of impact velocity, the severity of damage in the coal body was increased, while the size of the coal block was decreased. Moreover, there was good compliance between experimental and simulated stress wave curves in terms of coal sample failure and fracture morphology at different speeds. Finally, the parameters of the validated Holmquist–Johnson–Cook constitutive model were applied to the numerical simulation model of the impact damage of heading face and the process of coal seam damage in the roadway was visually displayed. The obtained results showed that the Holmquist–Johnson–Cook constitutive model parameters suitable for the prominent coal body were of great significance for the improvement and exploration of the occurrence mechanism of coal and rock dynamic disasters

    A Scheduling Method for Heterogeneous Signal Processing Platforms Based on Quantum Genetic Algorithm

    No full text
    Currently, many problems such as variable signal resources, complex execution environments, and low efficiency of scheduling algorithms are faced by heterogeneous signal processing platforms. The task scheduling algorithm is one of the key factors that directly affect the performance of the processing platform. In order to solve the problems of low efficiency of task scheduling algorithms and high computational cost of processors, a heterogeneous platform scheduling algorithm based on the quantum genetic algorithm is proposed in this paper. The algorithm constructs a task scheduling model by using a directed acyclic graph. This paper quantifies the mapping relationship between the quantum genetic algorithm and task scheduling. It corresponds qubits to binary, chromosomes to processor numbers, and individuals to processor scheduling strategies. In this paper, a new way of coding chromosomes using quantum coherence properties is designed to reduce the population size and increase population diversity. Crossover operations are performed on all individuals using full-interference crossover to avoid the results falling into local optimal solutions. The population of slow convergence is solved by implementing mutation operations on populations through quantum rotation gates. In addition, a task pre-ordering stage is designed based on the table scheduling algorithm. The task scheduling priority developed at this stage is used as the reference value for the initial encoding of the population, so that the search space for solutions is reduced. Finally, experiments are conducted using randomly generated task graphs. The algorithm is compared with improved genetic algorithms and existing intelligent scheduling algorithms. The results show that the algorithm can still obtain better results when the number of populations and iterations is small. It is more appropriate for heterogeneous platforms and computation-intensive tasks

    Intestinal ELF4 Deletion Exacerbates Alcoholic Liver Disease by Disrupting Gut Homeostasis

    No full text
    Alcohol liver disease (ALD) is characterized by intestinal barrier disruption and gut dysbiosis. Dysfunction of E74-like ETS transcription factor 4 (ELF4) leads to colitis. We aimed to test the hypothesis that intestinal ELF4 plays a critical role in maintaining the normal function of intestinal barrier and gut homeostasis in a mouse model of ALD. Intestinal ELF4 deficiency resulted in dysfunction of the intestinal barrier. Elf4−/− mice exhibited gut microbiota (GM) dysbiosis with the characteristic of a larger proportion of Proteobacteria. The LPS increased in Elf4−/− mice and was the most important differential metabolite between Elf4−/− mice and WT mice. Alcohol exposure increased liver-to-body weight ratio, and hepatic inflammation response and steatosis in WT mice. These deleterious effects were exaggerated in Elf4−/− mice. Alcohol exposure significantly increased serum levels of TG, ALT, and AST in Elf4−/− mice but not in WT mice. In addition, alcohol exposure resulted in enriched expression of genes associated with cholesterol metabolism and lipid metabolism in livers from Elf4−/− mice. 16S rRNA sequencing showed a decrease abundance of Akkermansia and Bilophila in Elf4−/− mice. In conclusion, intestinal ELF4 is an important host protective factor in maintaining gut homeostasis and alleviating alcohol exposure-induced hepatic steatosis and injury

    Theoretical Study Oxygen Reduction Activity of Phosphorus-doped Graphene Nanoribbons

    No full text
    Phosphorus-doped graphene is known to exhibit good electrocatalytic activity for oxygen reduction reaction (ORR). While the ORR activity of P-doped graphene nanoribbons (PGNR) is still unclear. Taking the common graphene nanoribbons with the edges of armchair as an example in this study, we research the mechanistic investigation of ORR on the PGNR under acidic electrolytic conditions by density functional theory (DFT). Based on the keen observation of the atomic charge distribution and adsorption energy at different sites, P atom in PGNR is considered to be the strongest adsorption site with oxygen. Detailed ORR mechanistic was deduced by the investigation of reaction heat, reaction barrier for each possible step and molecular dynamics (MD) simulation. Based on our calculations, when the contribution of the intermediate product to the ORR activity is not considered, PGNR does not possess the property as an ORR catalyst due to several high reaction barriers and some endothermic reactions for ORR path

    A multi-pattern hash-binary hybrid algorithm for URL matching in the HTTP protocol.

    No full text
    In this paper, based on our previous multi-pattern uniform resource locator (URL) binary-matching algorithm called HEM, we propose an improved multi-pattern matching algorithm called MH that is based on hash tables and binary tables. The MH algorithm can be applied to the fields of network security, data analysis, load balancing, cloud robotic communications, and so on-all of which require string matching from a fixed starting position. Our approach effectively solves the performance problems of the classical multi-pattern matching algorithms. This paper explores ways to improve string matching performance under the HTTP protocol by using a hash method combined with a binary method that transforms the symbol-space matching problem into a digital-space numerical-size comparison and hashing problem. The MH approach has a fast matching speed, requires little memory, performs better than both the classical algorithms and HEM for matching fields in an HTTP stream, and it has great promise for use in real-world applications

    Individuals with anxiety and depression use atypical decision strategies in an uncertain world

    No full text
    Previous studies have identified that enhanced learning rate is a key mechanism for adapting to fast-changing reward environments with high volatility, and that impairments in flexible learning rate may be associated with several psychiatric conditions. However, these studies have mostly assumed a single strategy manifested in the human probabilistic learning process. In contrast, we propose an alternative perspective and develop a hybrid mixture-of-strategy (MOS) model that incorporates three strategies: the expected utility strategy, which aims to maximize rewards; the magnitude-oriented strategy, which only considers reward magnitude; and the habitual strategy, which tends to repeat previous decisions. While the expected utility strategy is statistically optimal, the magnitude-oriented and habitual strategies are suboptimal but computationally simpler. In an open dataset where healthy controls and patients with anxiety and depression performed a probabilistic reversal learning task with distinct volatility conditions, our MOS model outperforms previous best-fitting models. Parameter analyses suggest that individuals with anxiety and depression exhibit weaker preferences for the optimal expected utility strategy but stronger preferences for the magnitude-oriented heuristic. The relative strength of these two strategies also predicts individual variation in symptom severity. Importantly, our MOS model explains the slower learning in patients by the different weighting of the different strategies rather than learning rate per se. These findings underscore the complexity of human learning and decision-making and suggest the possibility of mixed strategies in learning and decision-making. Further research is necessary to distinguish the flexible-learning-rate account from the mixture-of-strategy account

    Tunable Head-Conducting Microwave-Absorbing Multifunctional Composites with Excellent Microwave Absorption, Thermal Conductivity and Mechanical Properties

    No full text
    Developing composite materials with both thermal conductivity and microwave absorption is an effective strategy to solve the problems of heat dissipation burden and microwave radiation interference caused by the development of miniaturization and high performance of portable electronic equipment. However, these properties are not easy to simultaneously implement due to the limitation of single type fillers with a single particle size, inspiring the possibility of realizing multifunctional composites with the introduction of composite fillers. In this work, using alumina (Al2O3) and zinc oxide (ZnO) as head-conducting fillers, carbonyl iron (Fe(CO)5) as microwave-absorbing fillers, silicone rubber (SR) composites (Al2O3/ZnO/Fe(CO)5/SR) with enhanced microwave absorption, high thermal conductivity and good mechanical properties were successfully mass prepared. It was found that the composites can achieve a thermal conductivity of 3.61 W·m−1·K−1, an effective microwave absorption bandwidth of 10.86–15.47 GHz. Especially, there is an effective microwave absorption efficiency of 99% at 12.46–14.27 GHz, which can realize the integration of electromagnetic shielding and heat dissipation. The compact microstructure, formed by the overlapping of large particle size fillers and the filling of their gaps by small particle size fillers, is helpful to enhance the thermal conduction path and weaken the microwave reflection. The heat-conducting microwave-absorbing Al2O3/ZnO/Fe(CO)5/SR composites also have the advantages of thermal stability, lightness and flexibility, providing a certain experimental basis for the research and development of high-performance and diversified composites
    corecore