46 research outputs found
Calcium-fortified beverage supplementation on body composition in postmenopausal women
BACKGROUND: We investigated the effects of a calcium-fortified beverage supplemented over 12 months on body composition in postmenopausal women (n = 37, age = 48–75 y). METHODS: Body composition (total-body percent fat, %Fat(TB); abdominal percent fat, %Fat(AB)) was measured with dual energy x-ray absorptiometry. After baseline assessments, subjects were randomly assigned to a free-living control group (CTL) or the supplement group (1,125 mg Ca(++)/d, CAL). Dietary intake was assessed with 3-day diet records taken at baseline and 12 months (POST). Physical activity was measured using the Yale Physical Activity Survey. RESULTS: At 12 months, the dietary calcium to protein ratio in the CAL group (32.3 ± 15.6 mg/g) was greater than the CTL group (15.2 ± 7.5 mg/g). There were no differences from baseline to POST between groups for changes in body weight (CAL = 0.1 ± 3.0 kg; CTL = 0.0 ± 2.9 kg), %Fat(TB )(CAL = 0.0 ± 2.4%; CTL = 0.5 ± 5.4%), %Fat(AB )(CAL = -0.4 ± 8.7%; CTL = 0.6 ± 8.7%), or fat mass (CAL = 1.3 ± 2.6 kg; CTL = 1.3 ± 2.7 kg). CONCLUSION: These results indicate that increasing the calcium to protein ratio over two-fold by consuming a calcium-fortified beverage for 12 months did not decrease body weight, body fat, or abdominal fat composition in postmenopausal women
Life-Course Genome-wide Association Study Meta-analysis of Total Body BMD and Assessment of Age-Specific Effects.
Bone mineral density (BMD) assessed by DXA is used to evaluate bone health. In children, total body (TB) measurements are commonly used; in older individuals, BMD at the lumbar spine (LS) and femoral neck (FN) is used to diagnose osteoporosis. To date, genetic variants in more than 60 loci have been identified as associated with BMD. To investigate the genetic determinants of TB-BMD variation along the life course and test for age-specific effects, we performed a meta-analysis of 30 genome-wide association studies (GWASs) of TB-BMD including 66,628 individuals overall and divided across five age strata, each spanning 15 years. We identified variants associated with TB-BMD at 80 loci, of which 36 have not been previously identified; overall, they explain approximately 10% of the TB-BMD variance when combining all age groups and influence the risk of fracture. Pathway and enrichment analysis of the association signals showed clustering within gene sets implicated in the regulation of cell growth and SMAD proteins, overexpressed in the musculoskeletal system, and enriched in enhancer and promoter regions. These findings reveal TB-BMD as a relevant trait for genetic studies of osteoporosis, enabling the identification of variants and pathways influencing different bone compartments. Only variants in ESR1 and close proximity to RANKL showed a clear effect dependency on age. This most likely indicates that the majority of genetic variants identified influence BMD early in life and that their effect can be captured throughout the life course
Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits
The genetic background of childhood body mass index (BMI), and the extent to which the well-known associations of childhood BMI with adult diseases are explained by shared genetic factors, are largely unknown. We performed a genome-wide association study meta-analysis of BMI in 61,111 children aged between 2 and 10 years. Twenty-five independent loci reached genome-wide significance in the combined discovery and replication analyses. Two of these, located nearNEDD4LandSLC45A3, have not previously been reported in relation to either childhood or adult BMI. Positive genetic correlations of childhood BMI with birth weight and adult BMI, waist-to-hip ratio, diastolic blood pressure and type 2 diabetes were detected (R(g)ranging from 0.11 to 0.76, P-values Author summary Although twin studies have shown that body mass index (BMI) is highly heritable, many common genetic variants involved in the development of BMI have not yet been identified, especially in children. We studied associations of more than 40 million genetic variants with childhood BMI in 61,111 children aged between 2 and 10 years. We identified 25 genetic variants that were associated with childhood BMI. Two of these have not been implicated for BMI previously, located close to the genesNEDD4LandSLC45A3. We also show that the genetic background of childhood BMI overlaps with that of birth weight, adult BMI, waist-to-hip-ratio, diastolic blood pressure, type 2 diabetes, and age at menarche. Our results suggest that the biological processes underlying childhood BMI largely overlap with those underlying adult BMI. However, the overlap is not complete. Additionally, the genetic backgrounds of childhood BMI and other cardio-metabolic phenotypes are overlapping. This may mean that the associations of childhood BMI and later cardio-metabolic outcomes are partially explained by shared genetics, but it could also be explained by the strong association of childhood BMI with adult BMI.Peer reviewe
The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia : design, results and future prospects
The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.Peer reviewe
Understanding the genetic complexity of puberty timing across the allele frequency spectrum
Pubertal timing varies considerably and is associated with later health outcomes. We performed multi-ancestry genetic analyses on ~800,000 women, identifying 1,080 signals for age at menarche. Collectively, these explained 11% of trait variance in an independent sample. Women at the top and bottom 1% of polygenic risk exhibited ~11 and ~14-fold higher risks of delayed and precocious puberty, respectively. We identified several genes harboring rare loss-of-function variants in ~200,000 women, including variants in ZNF483, which abolished the impact of polygenic risk. Variant-to-gene mapping approaches and mouse gonadotropin-releasing hormone neuron RNA sequencing implicated 665 genes, including an uncharacterized G-protein-coupled receptor, GPR83, which amplified the signaling of MC3R, a key nutritional sensor. Shared signals with menopause timing at genes involved in DNA damage response suggest that the ovarian reserve might signal centrally to trigger puberty. We also highlight body size-dependent and independent mechanisms that potentially link reproductive timing to later life disease
The 7th Burnaby Biennial, Open Juried Show of Edition Art
Zemel outlines aspects of the jury process while refering to the romantic and formal qualities of the submissions. Esler expands upon the use of photo-mechanical processes in printmaking in several of the 49 Canadian artists' work