32 research outputs found
Comparison of Integrated Digital Radiometer with Concurrent Water Vapor Radiometer Using the Alphasat Receivers in Milan, Italy
In June 2014, NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) jointly deployed a pair of coherent 20 GHz and 40 GHz beacon receivers to the POLIMI campus in Milan, Italy to characterize the atmospheric channel at Ka- and Q-band within the framework of the Alphasat experiment. The Milan receivers observe the continuous-wave beacons broadcast over Europe by the Aldo Paraboni Technology Demonstration Payload (TDP #5), and, in September 2017, both channels were upgraded to incorporate a novel digital radiometer (DR) measurement which NASA has recently employed in other propagation measurement campaigns. In November 2016, a co-located water vapor radiometer (WVR) was also installed at POLIMI, and the concurrent data from both the WVR and DR thusly enables validation of this new DR technique against the established WVR. Herein, we preliminarily investigate the calibration of the DR measurements using the WVR data and also assess a calibration method that may be implemented where WVR data is not readily available
Comparison of Instantaneous Frequency Scaling from Rain Attenuation and Optical Disdrometer Measurements at K/Q bands
Rain attenuation is strongly dependent on the rain rate, but also on the rain drop size distribution (DSD). Typically, models utilize an average drop size distribution, such as those developed by Laws and Parsons, or Marshall and Palmer. However, individual rain events may possess drop size distributions which could be significantly different from the average and will impact, for example, fade mitigation techniques which utilize channel performance estimates from a signal at a different frequency. Therefore, a good understanding of the characteristics and variability of the raindrop size distribution is extremely important in predicting rain attenuation and instantaneous frequency scaling parameters on an event-toevent basis. Since June 2014, NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have measured the attenuation due to rain in Milan, Italy, on the 20/40 GHz beacon signal broadcast from the Alphasat TDP#5 Aldo Paraboni Q/V-band Payload. Concomitant with these measurements are the measurements of drop size distribution and rain rate utilizing a Thies Clima laser precipitation monitor (disdrometer). In this paper, we discuss the comparison of the predicted rain attenuation at 20 and 40 GHz derived from the drop size distribution data with the measured rain attenuation. The results are compared on statistical and real-time bases. We will investigate the performance of the rain attenuation model, instantaneous frequency scaling, and the distribution of the scaling factor. Further, seasonal rain characteristics will be analysed
Preliminary Results of the NASA Beacon Receiver for Alphasat Aldo Paraboni TDP5 Propagation Experiment
NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have initiated a joint propagation campaign within the framework of the Alphasat propagation experiment to characterize rain attenuation, scintillation, and gaseous absorption effects of the atmosphere in the 40 GHz band. NASA GRC has developed and installed a K/Q-band (20/40 GHz) beacon receiver at the POLIMI campus in Milan, Italy, which receives the 20/40 GHz signals broadcast from the Alphasat Aldo Paraboni TDP#5 beacon payload. The primary goal of these measurements is to develop a physical model to improve predictions of communications systems performance within the Q-band. Herein, we describe the design and preliminary performance of the NASA propagation terminal, which has been installed and operating in Milan since May 2014. The receiver is based upon a validated Fast Fourier Transform (FFT) I/Q digital design approach utilized in other operational NASA propagation terminals, but has been modified to employ power measurement via a frequency estimation technique and to coherently track and measure the amplitude of the 20/40 GHz beacon signals. The system consists of a 1.2-m K-band and a 0.6-m Qband Cassegrain reflector employing synchronous open-loop tracking to track the inclined orbit of the Alphasat satellite. An 8 Hz sampling rate is implemented to characterize scintillation effects, with a 1-Hz measurement bandwidth dynamic range of 45 dB. A weather station with an optical disdrometer is also installed to characterize rain drop size distribution for correlation with physical based models
Three Years of Atmospheric Characterization at Ka/Q-band with the NASA/POLIMI Alphasat Receiver in Milan, Italy
Since June of 2014, NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have jointly conducted a propagation campaign within the framework of the Alphasat propagation experiment through a propagation terminal at the POLIMI campus in Milan, Italy. The terminal utilizes the 20 GHz and 40 GHz beacons broadcast by the Aldo Paraboni Technology Demonstration Payload (TDP #5), and consists of dual coherent Ka- and Q-band beacon receivers. These provide a direct measurement of the signal attenuation and scintillation and are complemented by concurrent weather instrumentation that provides measurements of the atmospheric conditions at the receiver. The primary goal of these measurements is to improve model predictions of communication system performance at 40 GHz. Over three years of concurrent measurements have now been collected from the terminal, and herein we present a statistical analysis of the results thus far, as well as a summary of recent hardware upgrades to the receivers that were made in September 2017
Frequency Estimator Performance for a Software-Based Beacon Receiver
As propagation terminals have evolved, their design has trended more toward a software-based approach that facilitates convenient adjustment and customization of the receiver algorithms. One potential improvement is the implementation of a frequency estimation algorithm, through which the primary frequency component of the received signal can be estimated with a much greater resolution than with a simple peak search of the FFT spectrum. To select an estimator for usage in a Q/V-band beacon receiver, analysis of six frequency estimators was conducted to characterize their effectiveness as they relate to beacon receiver design
Design of a Combined Beacon Receiver and Digital Radiometer for 40 GHz Propagation Measurements at the Madrid Deep Space Communications Complex
NASA Glenn Research Center (GRC) and the Jet Propulsion Laboratory (JPL) have jointly developed an atmospheric propagation terminal to measure and characterize propagation phenomena at 40 GHz at the Madrid Deep Space Communications Complex (MDSCC) in Robledo de Chavela, Spain. The hybrid Q-band system combines a 40 GHz beacon receiver and digital radiometer into the same RF front-end and observes the 39.402 GHz beacon of the European Space Agencys Alphasat Aldo Paraboni TDP5 experiment. The goals of these measurements are to assist MDSCC mission operations as well as to contribute to the development and improvement of International Telecommunications Union (ITU) models for prediction of communications systems performance within the Q-band. Herein, we provide an overview of the system design, characterization, and plan of operations to commence at the MDSCC beginning in March 2017
Statistical Analysis of Instantaneous Frequency Scaling Factor as Derived from Optical Disdrometer Measurements at VW Bands
Since October 2015, NASA Glenn Research Center (GRC) and the Air Force Research Laboratory (AFRL) have collaboratively operated an RF terrestrial link in Albuquerque, New Mexico to characterize atmospheric propagation phenomena at 72 and 84 GHz. The WV-band Terrestrial Link Experiment (WTLE) consists of coherent transmitters at each frequency on the crest of the Sandia Mountains and a corresponding pair of receivers in south Albuquerque. The beacon receivers provide a direct measurement of the link attenuation, while concurrent weather instrumentation provides a measurement of the atmospheric conditions.Among the available weather instruments is an optical disdrometer which yields an optical measurement of rain rate, as well as droplet size and velocity distributions (DSD, DVD). In particular, the DSD can be used to derive an instantaneous scaling factor (ISF) by which the measured data at one frequency can be scaled to another for example, scaling the 72 GHz to an expected 84 GHz timeseries. Given the availability of both the DSD prediction and the directly observed 84 GHz attenuation, WTLE is thus uniquely able assess DSD-derived instantaneous frequency scaling at the VW-bands. Previous work along these lines has investigated the DSD-derived ISF at Ka and Q-band (20 GHz to 40 GHz) using a satellite beacon receiver experiment in Milan, Italy [1-3]. This work will expand the investigation to terrestrial links in the VW-bands, where the frequency scaling factor is lower and where the link is also much more sensitive to attenuation by rain, clouds, and other atmospheric effects
Long-Term Trends in Space-Ground Atmospheric Propagation Measurements
Propagation measurement campaigns are critical to characterizing the atmospheric behavior of a location and efficiently designing space-ground links. However, as global climate change affects weather patterns, the long-term trends of propagation data may be impacted over periods of decades or longer. Particularly, at high microwave frequencies (10 GHz and above), rain plays a dominant role in the attenuation statistics, and it has been observed that rain events over the past 50 years have trended toward increased frequency, intensity, and rain height. In the interest of quantifying the impact of these phenomena on long-term trends in propagation data, this paper compares two 20 GHz measurement campaigns both conducted at NASA's White Sands facility in New Mexico. The first is from the Advanced Communication Technology Satellite (ACTS) propagation campaign from 1994 - 1998, while the second is amplitude data recorded during a site test interferometer (STI) phase characterization campaign from 2009 - 2014
Design of a K/Q-band Beacon Receiver for the Alphasat TDP#5 Experiment
This paper describes the design and performance of a coherent K/Q-band (20/40GHz) beacon receiver developed at NASA Glenn Research Center (GRC) that will be installed at the Politecnico di Milano (POLIMI) for use in the Alphasat Technology Demonstration Payload #5 (TDP#5) beacon experiment. The goal of this experiment is to characterize rain fade attenuation at 40GHz to improve the performance of existing statistical rain attenuation models in the Q-band. The ground terminal developed by NASA GRC utilizes an FFT-based frequency estimation receiver capable of characterizing total path attenuation effects due to gaseous absorption, clouds, rain, and scintillation. The receiver system has been characterized in the lab and demonstrates a system dynamic range performance of better than 58dB at 1Hz and better than 48dB at 10Hz rates
Comparison of Integrated Digital Radiometer with Concurrent Water Vapor Radiometer using the Alphasat Receivers in Milan, Italy
In June 2014, NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) jointly deployed a pair of coherent 20 GHz and 40 GHz beacon receivers to the POLIMI campus in Milan, Italy to characterize the atmospheric channel at Ka- and Q-band within the framework of the Alphasat experiment. The Milan receivers observe the continuous-wave beacons broadcast over Europe by the Aldo Paraboni Technology Demonstration Payload (TDP #5), and, in September 2017, both channels were upgraded to incorporate a novel digital radiometer (DR) measurement which NASA has recently employed in other propagation measurement campaigns. In November 2016, a co-located water vapor radiometer (WVR) was also installed at POLIMI, and the concurrent data from both the WVR and DR thusly enables validation of this new DR technique against the established WVR. Herein, we preliminarily investigate the calibration of the DR measurements using the WVR data and also assess a calibration method that may be implemented where WVR data is not readily available