43 research outputs found

    Complex-Distance Potential Theory and Hyperbolic Equations

    Full text link
    An extension of potential theory in R^n is obtained by continuing the Euclidean distance function holomorphically to C^n. The resulting Newtonian potential is generated by an extended source distribution D(z) in C^n whose restriction to R^n is the delta function. This provides a natural model for extended particles in physics. In C^n, interpreted as complex spacetime, D(z) acts as a propagator generating solutions of the wave equation from their initial values. This gives a new connection between elliptic and hyperbolic equations that does not assume analyticity of the Cauchy data. Generalized to Clifford analysis, it induces a similar connection between solutions of elliptic and hyperbolic Dirac equations. There is a natural application to the time-dependent, inhomogeneous Dirac and Maxwell equations, and the `electromagnetic wavelets' introduced previously are an example.Comment: 25 pages, submited to Proceedings of 5th Intern. Conf. on Clifford Algebras, Ixtapa, June 24 - July 4, 199

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel.In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime: we compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a black hole and describe the metric fluctuations near the event horizon of an evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews in Relativity gr-qc/0307032 ; it includes new sections on the Validity of Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric Fluctuations of an Evaporating Black Hol

    Distributional form Invariant Linear Systems

    Full text link

    The Cardinal Series

    Full text link
    corecore