1,862 research outputs found
Minimal Model for Sand Dunes
We propose a minimal model for aeolian sand dunes. It combines an analytical
description of the turbulent wind velocity field above the dune with a
continuum saltation model that allows for saturation transients in the sand
flux. The model provides a qualitative understanding of important features of
real dunes, such as their longitudinal shape and aspect ratio, the formation of
a slip face, the breaking of scale invariance, and the existence of a minimum
dune size.Comment: 4 pages, 4 figures, replaced with publishd versio
Rapid and Precise Semi-Automatic Axon Quantification in Human Peripheral Nerves
We developed a time-efficient semi-automated axon quantification method using freeware in human cranial nerve sections stained with paraphenylenediamine (PPD). It was used to analyze a total of 1238 facial and masseteric nerve biopsies. The technique was validated by comparing manual and semi-automated quantification of 129 (10.4%) randomly selected biopsies. The software-based method demonstrated a sensitivity of 94% and a specificity of 87%. Semi-automatic axon counting was significantly faster (p<0.001) than manual counting. It took 1hour and 47minutes for all 129 biopsies (averaging 50sec per biopsy, 0.04seconds per axon). The counting process is automatic and does not need to be supervised. Manual counting took 21hours and 6minutes in total (average 9minutes and 49seconds per biopsy, 0.52seconds per axon). Our method showed a linear correlation to the manual counts (R=0.944 Spearman rho). Attempts have been made by several research groups to automate axonal load quantification. These methods often require specific hard- and software and are therefore only accessible to a few specialized laboratories. Our semi-automated axon quantification is precise, reliable and time-sparing using publicly available software and should be useful for an effective axon quantification in various human peripheral nerves
Invariant Sets and Explicit Solutions to a Third-Order Model for the Shearless Stratified Turbulent Flow
We study dynamics of the shearless stratified turbulent flows. Using the
method of differential constraints we find a class of explicit solutions to the
problem under consideration and establish that the differential constraint
obtained coincides with the well-known Zeman--Lumley model for stratified
flows.Comment: arxiv version is already officia
Entanglement and Timing-Based Mechanisms in the Coherent Control of Scattering Processes
The coherent control of scattering processes is considered, with electron
impact dissociation of H used as an example. The physical mechanism
underlying coherently controlled stationary state scattering is exposed by
analyzing a control scenario that relies on previously established entanglement
requirements between the scattering partners. Specifically, initial state
entanglement assures that all collisions in the scattering volume yield the
desirable scattering configuration. Scattering is controlled by preparing the
particular internal state wave function that leads to the favored collisional
configuration in the collision volume. This insight allows coherent control to
be extended to the case of time-dependent scattering. Specifically, we identify
reactive scattering scenarios using incident wave packets of translational
motion where coherent control is operational and initial state entanglement is
unnecessary. Both the stationary and time-dependent scenarios incorporate
extended coherence features, making them physically distinct. From a
theoretical point of view, this work represents a large step forward in the
qualitative understanding of coherently controlled reactive scattering. From an
experimental viewpoint, it offers an alternative to entanglement-based control
schemes. However, both methods present significant challenges to existing
experimental technologies
Electroconvulsive therapy related autobiographical amnesia: a review and case report
This is the author accepted manuscript. The final version is available from Taylor & Francis via the DOI in this recordIntroduction: While short-term cognitive impairment following electro-convulsive therapy (ECT) is
well described and acknowledged, the relationship between ECT and persistent memory impairment,
particularly of autobiographical memory, has been controversial.
Methods: We describe the case of a 70 year old consultant neurophysiologist, AW, who developed
prominent, selective autobiographical memory loss following two courses of ECT for treatmentresistant depression.
Results: His performance on standard measures of IQ, semantic and episodic memory, executive
function and mood was normal, while he performed significantly below controls on measures of
episodic autobiographical memory.
Conclusions: Explanations in terms of mood-related memory loss and somatoform disorder appear
unlikely. We relate AW’s autobiographical memory impairment, following his ECT, to reports of similar
autobiographical memory impairment occurring in the context of epilepsy, and emphasise the
importance of using sensitive approaches to AbM assessment.Dunhill Medical Trus
Magneto infra-red absorption in high electronic density GaAs quantum wells
Magneto infra-red absorption measurements have been performed in a highly
doped GaAs quantum well which has been lifted off and bonded to a silicon
substrate, in order to study the resonant polaron interaction. It is found that
the pinning of the cyclotron energy occurs at an energy close to that of the
transverse optical phonon of GaAs. This unexpected result is explained by a
model taking into account the full dielectric constant of the quantum well.Comment: 4 pages, 4 figures, to be published in Phys. Rev. Let
Corridors of barchan dunes: stability and size selection
Barchans are crescentic dunes propagating on a solid ground. They form dune
fields in the shape of elongated corridors in which the size and spacing
between dunes are rather well selected. We show that even very realistic models
for solitary dunes do not reproduce these corridors. Instead, two instabilities
take place. First, barchans receive a sand flux at their back proportional to
their width while the sand escapes only from their horns. Large dunes
proportionally capture more than they loose sand, while the situation is
reversed for small ones: therefore, solitary dunes cannot remain in a steady
state. Second, the propagation speed of dunes decreases with the size of the
dune: this leads -- through the collision process -- to a coarsening of barchan
fields. We show that these phenomena are not specific to the model, but result
from general and robust mechanisms. The length scales needed for these
instabilities to develop are derived and discussed. They turn out to be much
smaller than the dune field length. As a conclusion, there should exist further
- yet unknown - mechanisms regulating and selecting the size of dunes.Comment: 13 pages, 13 figures. New version resubmitted to Phys. Rev. E.
Pictures of better quality available on reques
Vaccination Against Amyloidogenic Aggregates in Pancreatic Islets Prevents Development of Type 2 Diabetes Mellitus
Type 2 diabetes mellitus (T2DM) is a chronic progressive disease characterized by insulin resistance and insufficient insulin secretion to maintain normoglycemia. The majority of T2DM patients bear amyloid deposits mainly composed of islet amyloid polypeptide (IAPP) in their pancreatic islets. These-originally β-cell secretory products-extracellular aggregates are cytotoxic for insulin-producing β-cells and are associated with β-cell loss and inflammation in T2DM advanced stages. Due to the absence of T2DM preventive medicaments and the presence of only symptomatic drugs acting towards increasing hormone secretion and action, we aimed at establishing a novel disease-modifying therapy targeting the cytotoxic IAPP deposits in order to prevent the development of T2DM. We generated a vaccine based on virus-like particles (VLPs), devoid of genomic material, coupled to IAPP peptides inducing specific antibodies against aggregated, but not monomeric IAPP. Using a mouse model of islet amyloidosis, we demonstrate in vivo that our vaccine induced a potent antibody response against aggregated, but not soluble IAPP, strikingly preventing IAPP depositions, delaying onset of hyperglycemia and the induction of the associated pro-inflammatory cytokine Interleukin 1β (IL-1β). We offer the first cost-effective and safe disease-modifying approach targeting islet dysfunction in T2DM, preventing pathogenic aggregates without disturbing physiological IAPP function.These studies were funded by a project grant from the Swiss National Foundation (SNF). We acknowledge the technical assistance of Sydney W. Pence and Faith Slubowski at the Institute of Veterinary Physiology, University of Zürich. We appreciate the kind possibility given by Nanolive (Lausanne, Switzerland) for the opportunity and the collaborative acquisition of tomographic pictures.S
Using electronic structure changes to map the H-T phase diagram of alpha'-NaV2O5
We report polarized optical reflectance studies of \alpha'-NaV2O5 as a
function of temperature (4-45 K) and magnetic field (0-60 T). Rung directed
electronic structure changes, as measured by near-infrared reflectance ratios
\Delta R(H)=R(H)/R(H=0 T), are especially sensitive to the phase boundaries. We
employ these changes to map out an H-T phase diagram. Topological highlights
include the observation of two phase boundaries slightly below T_{SG}, enhanced
curvature of the 34 K phase boundary above 35 T, and, surprisingly, strong
hysteresis effects of both transitions with applied field.Comment: 4 pages, 3 figures, PRB accepte
- …