6 research outputs found

    Efficient Ocular Delivery of VCP siRNA via Reverse Magnetofection in RHO P23H Rodent Retina Explants

    No full text
    The use of synthetic RNA for research purposes as well as RNA-based therapy and vaccination has gained increasing importance. Given the anatomical seclusion of the eye, small interfering RNA (siRNA)-induced gene silencing bears great potential for targeted reduction of pathological gene expression that may allow rational treatment of chronic eye diseases in the future. However, there is yet an unmet need for techniques providing safe and efficient siRNA delivery to the retina. We used magnetic nanoparticles (MNPs) and magnetic force (Reverse Magnetofection) to deliver siRNA/MNP complexes into retinal explant tissue, targeting valosin-containing protein (VCP) previously established as a potential therapeutic target for autosomal dominant retinitis pigmentosa (adRP). Safe and efficient delivery of VCP siRNA was achieved into all retinal cell layers of retinal explants from the RHO P23H rat, a rodent model for adRP. No toxicity or microglial activation was observed. VCP silencing led to a significant decrease of retinal degeneration. Reverse Magnetofection thus offers an effective method to deliver siRNA into retinal tissue. Used in combination with retinal organotypic explants, it can provide an efficient and reliable preclinical test platform of RNA-based therapy approaches for ocular diseases

    Self-Amplifying Replicon RNA Delivery to Dendritic Cells by Cationic Lipids

    Get PDF
    Advances in RNA technology during the past two decades have led to the construction of replication-competent RNA, termed replicons, RepRNA, or self-amplifying mRNA, with high potential for vaccine applications. Cytosolic delivery is essential for their translation and self-replication, without infectious progeny generation, providing high levels of antigen expression for inducing humoral and cellular immunity. Synthetic nanoparticle-based delivery vehicles can both protect the RNA molecules and facilitate targeting of dendritic cells—critical for immune defense development. Several cationic lipids were assessed, with RepRNA generated from classical swine fever virus encoding nucleoprotein genes of influenza A virus. The non-cytopathogenic nature of the RNA allowed targeting to dendritic cells without destroying the cells—important for prolonged antigen production and presentation. Certain lipids were more effective at delivery and at promoting translation of RepRNA than others. Selection of particular lipids provided delivery to dendritic cells that resulted in translation, demonstrating that delivery efficiency could not guarantee translation. The observed translation in vitro was reproduced in vivo by inducing immune responses against the encoded influenza virus antigens. Cationic lipid-mediated delivery shows potential for promoting RepRNA vaccine delivery to dendritic cells, particularly when combined with additional delivery elements. Keywords: replicon, RepRNA, self-amplifying, cationic lipids, dendritic cells, nanoparticle delivery, influenza vaccines, humoral immunity, cellular immunit

    A common SCN1A splice-site polymorphism modifies the effect of carbamazepine on cortical excitability - A pharmacogenetic transcranial magnetic stimulation study

    No full text
    Objective SCN1A encodes the alpha subunit of the voltage-gated sodium channel and plays a crucial role in several epilepsy syndromes. The common SCN1A splice-site polymorphism rs3812718 (IVS5N+5 G>A) might contribute to the pathophysiology underlying genetic generalized epilepsies and is associated with electrophysiologic properties of the channel and the effect of sodium-channel blocking antiepileptic drugs. We assessed the effects of the rs3812718 genotype on cortical excitability at baseline and after administration of carbamazepine in order to investigate the mechanism of this association. Methods Paired-pulse transcranial magnetic stimulation (TMS) was applied in 92 healthy volunteers with the homozygous genotypes AA or GG of rs3812718 at baseline and after application of 400 mg of carbamazepine or placebo in a double-blind, randomized, crossover design. Resting motor threshold (RMT), short interval intracortical inhibition (SICI), intracortical facilitation (ICF), and cortical silent period (CSP) were determined. Results At baseline there was no significant difference in any TMS parameter. Genotype GG was associated with a higher carbamazepine-induced increase in CSP duration as compared to AA (multivariate analysis of covariance [MANCOVA], p = 0.013). An expected significant increase in RMT was genotype independent. Significance We found that the rs3812718 genotype modifies the effect of carbamazepine on CSP duration (mainly reflecting modulation of \u3b3-aminobutyric acid (GABA)ergic inhibition), but not on RMT (mainly reflecting modulation of voltage-gated sodium channels). This provides evidence that rs3812718 affects the pharmacoresponse to carbamazepine via an effect on GABAergic cortical interneurons. Our results also confirm that TMS is useful to investigate the effect of genetic variants on cortical excitability and pharmacoresponse. \ua9 Wiley Periodicals, Inc. \ua9 2014 International League Against Epilepsy
    corecore