35 research outputs found

    On the classification and dispersability of circulant graphs with two jump lengths

    Full text link
    In this paper, we give the classification of circulant graphs C(Zn,S)C(\mathbb{Z}_{n},S) with ∣S∣=2|S|=2 and completely solve the dispersability of circulant graphs C(Zn,{1,k})C(\mathbb{Z}_{n},\{1, k\})

    Matching Book Thickness of Halin Graphs

    Full text link
    The \emph{matching book embedding} of a graph GG is to arrange its vertices on the spine, and draw its edges into the pages so that the edges on every page do not intersect each other and the maximum degree of vertices on every page is one. The \emph{matching book thickness} is the minimum number of pages in which the graph GG can be matching embedded. In this paper, the matching book thickness of Halin graphs is determined

    Maximal quantum interaction between free electrons and photons

    Full text link
    The emerging field of free-electron quantum optics enables electron-photon entanglement and holds the potential for generating nontrivial photon states for quantum information processing. Although recent experimental studies have entered the quantum regime, rapid theoretical developments predict that qualitatively unique phenomena only emerge beyond a certain interaction strength. It is thus pertinent to identify the maximal electron-photon interaction strength and the materials, geometries, and particle energies that enable one to approach it. We derive an upper limit to the quantum vacuum interaction strength between free electrons and single-mode photons, which illuminates the conditions for the strongest interaction. Crucially, we obtain an explicit energy selection recipe for electrons and photons to achieve maximal interaction at arbitrary separations and identify two optimal regimes favoring either fast or slow electrons over those with intermediate velocities. We validate the limit by analytical and numerical calculations on canonical geometries and provide near-optimal designs indicating the feasibility of strong quantum interactions. Our findings offer fundamental intuition for maximizing the quantum interaction between free electrons and photons and provide practical design rules for future experiments on electron-photon and electron-mediated photon-photon entanglement. They should also enable the evaluation of key metrics for applications such as the maximum power of free-electron radiation sources and the maximum acceleration gradient of dielectric laser accelerators

    Mobile Foundation Model as Firmware

    Full text link
    In today's landscape, smartphones have evolved into hubs for hosting a multitude of deep learning models aimed at local execution. A key realization driving this work is the notable fragmentation among these models, characterized by varied architectures, operators, and implementations. This fragmentation imposes a significant burden on the comprehensive optimization of hardware, system settings, and algorithms. Buoyed by the recent strides in large foundation models, this work introduces a pioneering paradigm for mobile AI: a collaborative management approach between the mobile OS and hardware, overseeing a foundational model capable of serving a broad spectrum of mobile AI tasks, if not all. This foundational model resides within the NPU and remains impervious to app or OS revisions, akin to firmware. Concurrently, each app contributes a concise, offline fine-tuned "adapter" tailored to distinct downstream tasks. From this concept emerges a concrete instantiation known as \sys. It amalgamates a curated selection of publicly available Large Language Models (LLMs) and facilitates dynamic data flow. This concept's viability is substantiated through the creation of an exhaustive benchmark encompassing 38 mobile AI tasks spanning 50 datasets, including domains such as Computer Vision (CV), Natural Language Processing (NLP), audio, sensing, and multimodal inputs. Spanning this benchmark, \sys unveils its impressive performance. It attains accuracy parity in 85\% of tasks, demonstrates improved scalability in terms of storage and memory, and offers satisfactory inference speed on Commercial Off-The-Shelf (COTS) mobile devices fortified with NPU support. This stands in stark contrast to task-specific models tailored for individual applications.Comment: 17 pages, 15 figures, published to ACM MobiCom'2

    The efficacy and safety of condoliase for lumbar disc herniation: a systematic review and meta-analysis

    Get PDF
    Background: Chemonucleolysis is a minimally invasive treatment of lumbar disc herniation (LDH). However, the low specificity of the enzyme and the existence of serious adverse events limit the application of chemonucleolysis. Clinical studies in recent years have shown that Chondroitin sulfate ABC endolyase (condoliase) is a potential therapeutic enzyme for LDH. Aim. A meta-analysis was conducted to determine the efficacy and safety of condoliase in LDH treatment.Methods: We searched Web of Science, Embase, PubMed, and Cochrane Library databases. Two reviewers independently screened articles, extracted data, and assessed the risk of bias. The outcomes were the total effective rate, Oswestry Disability Index (ODI) score change, the proportion of lumbar surgery after condoliase treatment, herniated mass volume change, Pfirrmann grade change, and adverse events. Review Manager 5.3 and Stata 12.0 were used for meta-, sensitivity, and bias analysis.Results: Ten studies were included. A single-arm meta-analysis showed that the total effective rate was 78% [95% confidence interval (CI) 75%–81%], the proportion of surgery was 9% (95% CI 7%–12%), the proportion of Pfirrmann grade change was 43% (95%CI 38%–47%), and the adverse events were 4% (95% CI 2%–6%) after condoliase treatment. The two-arm meta-analysis showed that the ODI score change [standardized mean difference (SMD) −2.46, 95% CI −3.30 to −1.63] and the herniated mass volume change (SMD −16.97, 95% CI −23.92 to −10.03) of the condoliase treatment group were greater than those of the placebo control group, and there was no difference in adverse events between the two groups (OR 1.52, 95% CI 0.60–3.85). The results of sensitivity and publication bias analyses showed that the results were robust.Conclusion: Condoliase intradiscal injection has excellent eutherapeutic and safety for LDH, thus, has considerable potential as a treatment option besides conservative treatment and surgical intervention for LDH.Systematic Review Registration:https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022375492, PROSPERO (CRD42022375492)

    Markerless Kinect-Based Hand Tracking for Robot Teleoperation

    No full text
    This paper presents a real-time remote robot teleoperation method using markerless Kinect-based hand tracking. Using this tracking algorithm, the positions of index finger and thumb in 3D can be estimated by processing depth images from Kinect. The hand pose is used as a model to specify the pose of a real-time remote robot's end-effector. This method provides a way to send a whole task to a remote robot instead of sending limited motion commands like gesture-based approaches and this method has been tested in pick-and-place tasks
    corecore