173 research outputs found

    Mesostructured Block Copolymer Nanoparticles: Versatile Templates for Hybrid Inorganic/Organic Nanostructures

    Get PDF
    We present a versatile strategy to prepare a range of nanostructured poly(styrene)-block-poly(2-vinyl pyridine) copolymer particles with tunable interior morphology and controlled size by a simple solvent exchange procedure. A key feature of this strategy is the use of functional block copolymers incorporating reactive pyridyl moieties which allow the absorption of metal salts and other inorganic precursors to be directed. Upon reduction of the metal salts, well-defined hybrid metal nanoparticle arrays could be prepared, whereas the use of oxide precursors followed by calcination permits the synthesis of silica and titania particles. In both cases, ordered morphologies templated by the original block copolymer domains were obtained

    Redox-Active Polymer Microcapsules for the Delivery of a Survivin-Specific siRNA in Prostate Cancer Cells

    No full text
    In this report, we describe the delivery of small interfering RNA (siRNA) using Lbl-assembled microcapsules. The microcapsules are based on negatively charged poly(methacrylic acid) nanometer thin films containing cross-linking disulfide bonds. One system is polycation-free and another contains polylysine for siRNA complexation in the microcapsule void. When microcapsules containing a siRNA targeting survivin were delivered to PC-3 prostate cancer cells, a significant Inhibition of the expression of the antiapoptotic protein was observed. However, down-regulation of survivin was also observed In PC-3 cells exposed to microcapsules embedded with a scrambled siRNA as well as In cells treated with empty microcapsules. These findings Indicate a capsule-dependent off-target effect, which Is supported by a reduction in the expression of other survivin-unrelated proteins. The microcapsules and their polymeric constituents do not affect cell proliferation, as determined by a metabolic assay, even after 4 days of exposure. In addition, in PC-3 cells exposed to microcapsules, we observed a marked accumulation of Lob, a marker related to autophagy (Le., self-digestion), a degradation pathway involved In the maintenance of cell homeostasis in response to different stresses. This evidence suggests that empty microcapsules can induce a perturbation of the intracellular environment, which causes the activation of a cell safeguard mechanism that may limit the therapeutic effect of the microcapsules in tumor cells
    corecore