8 research outputs found

    Copy number variation in MODY diabetes - Familial case presentation

    Get PDF
    MODY (maturity-onset diabetes of the young) is an autosomal dominant form of diabetes that is usually manifested before the 25-year of life. This type of diabetes is caused by defects in the primary insulin secretion. There are several types of MODY, which are monogenic diseases, where mutations in a single gene are responsible for a particular type of MODY. Currently, there are eleven types of MODY, from which the most common types are MODY 2 and MODY 3 (with mutations on GCK and HNF1A genes, respectively). We identified very rare MODY 7 type of diabetes in three family members by MLPA analysis

    Effects of combined treatment of probiotics and metformin in management of type 2 diabetes:A systematic review and meta-analysis

    Get PDF
    Background: Lifestyle changes and dietary intervention, including the use of probiotics, can modulate dysbiosis of gut microbiome and contribute to the management of type 2 diabetes mellitus (T2DM). This systematic review and meta-analysis aim to assess the efficacy of metformin plus probiotics versus metformin alone on outcomes in patients with T2DM. Methods: We searched MEDLINE and EMBASE from inception to February 2023 to identify all randomized controlled trials (RCTs), which compared the use of metformin plus probiotics versus metformin alone in adult patients with T2DM. Data were summarized as mean differences (MD) with 95 % confidence interval (CI) and pooled under the random effects model. Findings: Fourteen RCTs (17 comparisons, 1009 patients) were included in this systematic review. Pooled results show a significant decrease in fasting glucose (FG) (MD = −0.64, 95 % CI = −1.06, −0.22) and HbA1c (MD = −0.29, 95 % CI = −0.47, −0.10) levels in patients with T2DM treated with metformin plus probiotics versus metformin alone. The addition of probiotics to metformin resulted in lower odds of gastrointestinal adverse events (Odds ratio = 0.18, 95 % CI = 0.09, 0.3.8; I2 = 0 %). Conclusions: The addition of probiotics to metformin therapy is associated with improvement in T2DM outcomes. However, high-quality and adequately reported RCTs are needed in the future to confirm our findings.</p

    Effects of TCF7L2 rs7903146 variant on metformin response in patients with type 2 diabetes

    Get PDF
    The response to metformin, the most commonly used drug for the treatment of type 2 diabetes (T2D), is highly variable. The common variant rs7903146 C>T within the transcription factor 7 like 2 gene (TCF7L2) is the strongest genetic risk factor associated with T2D to date. In this study we explored the effects of TCF7L2 rs7903146 genotype on metformin response in T2D. The study included 86 newly diagnosed patients with T2D, incident users of metformin. Levels of fasting glucose, insulin, HbA1c, total cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides, and anthropometric parameters were measured prior to metformin therapy, and 6 and 12 months after the treatment. Genotyping of TCF7L2 rs7903146 was performed by the Sequenom MassARRAY® iPLEX® platform. At baseline, the diabetes risk allele (T) showed an association with lower triglyceride levels (p = 0.037). After 12 months of metformin treatment, the T allele was associated with 25.9% lower fasting insulin levels (95% CI 10.9-38.3%, p = 0.002) and 29.1% lower HOMA-IR index (95% CI 10.1-44.1%, p = 0.005), after adjustment for baseline values. Moreover, the T allele was associated with 6.7% lower fasting glucose levels (95% CI 1.1-12.0%, p = 0.021), adjusted for baseline glucose and baseline HOMA-%B levels, after 6 months of metformin treatment. This effect was more pronounced in TT carriers who had 16.8% lower fasting glucose levels (95% CI 7.0-25.6%, p = 0.002) compared to the patients with CC genotype. Our results suggest that TCF7L2 rs7903146 variant affects markers of insulin resistance and glycemic response to metformin in newly diagnosed patients with T2D within the first year of metformin treatment

    Incidence of prediabetes and risk of developing cardiovascular disease in women with polycystic ovary syndrome

    No full text
    Our aim was to determine the incidence of prediabetes and risk of developing cardiovascular disease (CVD) in women with polycystic ovary syndrome (PCOS). This prospective, observational study included 148 women with PCOS, without Type 2 diabetes mellitus (T2DM) and CVD present at baseline. In the fasting blood samples, we measured lipids, glucose, and insulin levels during oral glucose tolerance test, levels of C-reactive protein (CRP), steroids, 25-hydroxyvitamin D (25-OHD), prolactin, thyroid-stimulating hormone, and parathyroid hormone. The follow-up period was 3 years. At baseline, prevalent prediabetes was present in 18 (12%) of PCOS cases and it progressed to T2DM in 5 (3%) of the cases. Incident prediabetes during the follow-up was noted in 47 (32%) women or 4.7 per 1000 persons/year. Prediabetes was associated with elevated body mass index (BMI) (odds ratio [OR] = 1.089, confidence interval [CI]: 1.010; 1.174, p = 0.026), high baseline levels of CRP (OR = 3.286, CI: 1.299; 8.312, p = 0.012), homeostatic model assessment - insulin resistance (IR) (OR = 2.628, CI: 1.535; 4.498, p < 0.001), and high lipid accumulation product (LAP) (OR = 1.009, CI: 1.003; 1.016, p = 0.005). Furthermore, prediabetes was associated with low 25-OHD (OR = 0.795, CI: 0.724; 0.880, p ≤ 0.05). In addition, cardiovascular risk in PCOS women with prediabetes was high (hazard ratio = 1.092, CI: 1.036; 1.128, p < 0.001). We showed association of prediabetes with high BMI, IR, markers of inflammation, LAP, and low serum 25-OHD concentration. IR appears to be more relevant than the other predictors of prediabetes risk in this study. PCOS women are considered as a high-risk population for prediabetes

    PPAR agonists as add-on treatment with metformin in management of type 2 diabetes:a systematic review and meta-analysis

    Get PDF
    The combination of metformin and the peroxisome proliferator-activated receptors (PPAR) agonists offers a promising avenue for managing type 2 diabetes (T2D) through their potential complementary mechanisms of action. The results from randomized controlled trials (RCT) assessing the efficacy of PPAR agonists plus metformin versus metformin alone in T2D are inconsistent, which prompted the conduct of the systematic review and meta-analysis. We searched MEDLINE and EMBASE from inception (1966) to March 2023 to identify all RCTs comparing any PPAR agonists plus metformin versus metformin alone in T2D. Categorical variables were summarized as relative risk along with 95% confidence interval (CI). Twenty RCTs enrolling a total of 6058 patients met the inclusion criteria. The certainty of evidence ranged from moderate to very low. Pooled results show that using PPAR agonist plus metformin, as compared to metformin alone, results in lower concentrations of fasting glucose [MD = - 22.07 mg/dl (95% CI - 27.17, - 16.97), HbA1c [MD = - 0.53% (95% CI - 0.67, - 0.38)], HOMA-IR [MD = - 1.26 (95% CI - 2.16, - 0.37)], and fasting insulin [MD = - 19.83 pmol/L (95% CI - 29.54, - 10.13)] without significant increase in any adverse events. Thus, synthesized evidence from RCTs demonstrates the beneficial effects of PPAR agonist add-on treatment versus metformin alone in T2D patients. In particular, novel dual PPARα/γ agonist (tesaglitazar) demonstrate efficacy in improving glycaemic and lipid concentrations, so further RCTs should be performed to elucidate the long-term outcomes and safety profile of these novel combined and personalized therapeutic strategies in the management of T2D.PROSPERO registration no. CRD42023412603.</p

    Association of IRS1 genetic variants with glucose control and insulin resistance in type 2 diabetic patients from Bosnia and Herzegovina

    No full text
    Previous studies reported conflicting results regarding association of insulin receptor substrate 1 (IRS1) gene variation with type 2 diabetes (T2D) and insulin resistance (IR) in different ethnic groups. We examined the association of rs7578326, rs2943641, and rs4675095 in the IRS1 gene with T2D and related traits in a population from Bosnia and Herzegovina, which is one of the European countries with the highest T2D prevalence of 12.5%. Our study included 390 T2D patients and 252 control subjects. Biochemical parameters, including fasting glucose (FG), fasting insulin (FI), homeostasis model assessment insulin resistance index (HOMA-IR), and HbA 1c were measured in all participants. Genotyping analysis was performed by Mass Array Sequenom iPlex platform. Our results demonstrated that rs7578326 and rs4675095 variants were associated with increased FG levels. The rs7578326 was also associated with higher FI, HOMA-IR (B = 0.08, 95% CI [0.01, 0.15], p add = 0.025; B = 0.079, 95% CI [0.006, 0.150], p add = 0.033, respectively) in T2D, and with HbA 1c (B = 0.034, 95% CI [0.003, 0.065], p dom = 0.035) in non-drug-treated T2D. In contrast, rs2943641 C allele was associated with lower FG levels in control subjects (B = -0.17, 95% CI [-0.03, -0.002], p add = 0.030) and HbA 1c (B = 0.03, 95% CI [0.002, 0.06], p dom = 0.040) in non-drug-treated T2D. We report the association between common variants in IRS1 gene with insulin resistance, glucose, and HbA 1c levels in Bosnia and Herzegovina's population
    corecore