38 research outputs found

    The B cell-specific nuclear factor OTF-2 positively regulates transcription of the human class II transplantation gene, DRA

    Get PDF
    The promoter of the major histocompatibility class II gene DRA contains an octamer element (ATTTGCAT) that is required for efficient DRA expression in B cells. Several DNA-binding proteins are known to bind this sequence. The best characterized are the B cell-specific OTF-2 and the ubiquitous OTF-1. This report directly demonstrates that OTF-2 but not OTF-1 regulates the DRA gene. In vitro transcription analysis using protein fractions enriched for the octamer-binding protein OTF-2 demonstrate a positive functional role for OTF-2 in DRA gene transcription. In contrast, OTF-1-enriched protein fractions did not affect DRA gene transcription although it functionally enhanced the transcription of another gene. Recombinant OTF-2 protein produced by in vitro transcription/translation could also enhance DRA gene transcription in vitro. In vivo transient transfection studies utilizing an OTF-2 expression vector resulted in similar findings: that OTF-2 protein enhanced DRA gene transcription, and that this effect requires an intact octamer element. Together these results constitute the first direct evidence of a positive role for the lymphoid-specific octamer-binding factor in DRA gene transcription

    Affinity-purified CCAAT-box-binding protein (YEBP) functionally regulates expression of a human class II major histocompatibility complex gene and the herpes simplex virus thymidine kinase gene.

    Get PDF
    Efficient major histocompatibility complex class II gene expression requires conserved protein-binding promoter elements, including X and Y elements. We affinity purified an HLA-DRA Y-element (CCAAT)-binding protein (YEBP) and used it to reconstitute Y-depleted HLA-DRA in vitro transcription. This directly demonstrates a positive functional role for YEBP in HLA-DRA transcription. The ability of YEBP to regulate divergent CCAAT elements was also assessed; YEBP was found to partially activate the thymidine kinase promoter. This functional analysis of YEBP shows that this protein plays an important role in the regulation of multiple genes
    corecore