12 research outputs found

    A novel planar optical sensor for simultaneous monitoring of oxygen, carbon dioxide, pH and temperature

    Get PDF
    The first quadruple luminescent sensor is presented which enables simultaneous detection of three chemical parameters and temperature. A multi-layer material is realized and combines two spectrally independent dually sensing systems. The first layer employs ethylcellulose containing the carbon dioxide sensing chemistry (fluorescent pH indicator 8-hydroxy-pyrene-1,3,6-trisulfonate (HPTS) and a lipophilic tetraalkylammonium base). The cross-linked polymeric beads stained with a phosphorescent iridium(III) complex are also dispersed in ethylcellulose and serve both for oxygen sensing and as a reference for HPTS. The second (pH/temperature) dually sensing system relies on the use of a pH-sensitive lipophilic seminaphthorhodafluor derivative and luminescent chromium(III)-activated yttrium aluminum borate particles (simultaneously acting as a temperature probe and as a reference for the pH indicator) which are embedded in polyurethane hydrogel layer. A silicone layer is used to spatially separate both dually sensing systems and to insure permeation selectivity for the CO2/O2 layer. The CO2/O2 and the pH/temperature layers are excitable with a blue and a red LED, respectively, and the emissions are isolated with help of optical filters. The measurements are performed at two modulation frequencies for each sensing system and the modified Dual Lifetime Referencing method is used to access the analytical information. The feasibility of the simultaneous four-parameter sensing is demonstrated. However, the practical applicability of the material may be compromised by its high complexity and by the performance of individual indicators

    Dual Fluorescence Sensor for Trace Oxygen and Temperature with Unmatched Range and Sensitivity

    No full text
    An optical dual sensor for oxygen and temperature is presented that is highly oxygen sensitive and covers a broad temperature range. Dual sensing is based on luminescence lifetime measurements. The novel sensor contains two luminescent compounds incorporated into polymer films. The temperature-sensitive dye (ruthenium tris-1,10-phenanthroline) has a highly temperature-dependent luminescence and is incorporated in poly(acrylonitrile) to avoid cross-sensitivity to oxygen. Fullerene C70 was used as the oxygen-sensitive probe owing to its strong thermally activated delayed fluorescence at elevated temperatures that is extremely oxygen sensitive. The cross-sensitivity of C70 to temperature is accounted for by means of the temperature sensor. C70 is incorporated into a highly oxygen-permeable polymer, either ethyl cellulose or organosilica. The two luminescent probes have different emission spectra and decay times, and their emissions can be discriminated using both parameters. Spatially resolved sensing is achieved by means of fluorescence lifetime imaging. The response times of the sensor to oxygen are short. The dual sensor exhibits a temperature operation range between at least 0 and 120 °C, and detection limits for oxygen in the ppbv range, operating for oxygen concentrations up to at least 50 ppmv. These ranges outperform all dual oxygen and temperature sensors reported so far. The dual sensor presented in this study is especially appropriate for measurements under extreme conditions such as high temperatures and ultralow oxygen levels. This dual sensor is a key step forward in a number of scientifically or commercially important applications including food packaging, for monitoring of hyperthermophilic microorganisms, in space technology, and safety and security applications in terms of detection of oxygen leaks

    Fiber-Optic Microsensors for Simultaneous Sensing of Oxygen and pH, and of Oxygen and Temperature

    Get PDF
    Fiber-optic microsensors with a tip diameter of 140 μm have been developed that enable simultaneous measurement of dissolved oxygen (DO) and pH, and of DO and temperature (T), respectively. The tip of the optical fiber was covered with sensor compositions based on luminescent microbeads that respond to the respective parameters by a change in the decay time, intensity of their luminescence, or both. The use of microbeads enables the ratio of the signals to be easily varied, reduces the risk of fluorescence energy transfer between indicator dyes, and reduces the adverse effect of singlet oxygen that is produced in the oxygen-sensitive beads. The sensor chemistry for DO/pH was modifie
    corecore