23 research outputs found

    Cosmological term as a source of mass

    Full text link
    In the spherically symmetric case the dominant energy condition together with the requirements of regularity at the center, asymptotic flatness and fineteness of the ADM mass, defines the family of asymptotically flat globally regular solutions to the Einstein minimally coupled equations which includes the class of metrics asymptotically de Sitter at approaching the regular center. The source term corresponds to an r-dependent cosmological term given by the second rank symmetric tensor invariant under boosts in the radial direction and evolving from de Sitter vacuum in the origin to Minkowski vacuum at infinity. Space-time symmetry changes smoothly from the de Sitter group at the center to the Lorentz group at infinity through the radial boosts in between. The standard formula for the ADM mass relates it to the de Sitter vacuum replacing a central singularity at the scale of symmetry restoration. For masses exceeding a certain critical value m_{crit} de Sitter-Schwarzschild geometry describes a vacuum nonsingular black hole, while beyond m_{crit} it describes a G-lump which is a vacuum selfgravitating particlelike structure without horizons. Quantum energy spectrum of G-lump is shifted down by the binding energy, and zero-point vacuum mode is fixed at the value corresponding to the Hawking temperature from the de Sitter horizon.Comment: 8 pages, revtex, 8 figures incorporated, to appear in Classical and Quantum Gravit

    The Beginning and Evolution of the Universe

    Full text link
    We review the current standard model for the evolution of the Universe from an early inflationary epoch to the complex hierarchy of structure seen today. We summarize and provide key references for the following topics: observations of the expanding Universe; the hot early Universe and nucleosynthesis; theory and observations of the cosmic microwave background; Big Bang cosmology; inflation; dark matter and dark energy; theory of structure formation; the cold dark matter model; galaxy formation; cosmological simulations; observations of galaxies, clusters, and quasars; statistical measures of large-scale structure; and measurement of cosmological parameters. We conclude with discussion of some open questions in cosmology. This review is designed to provide a graduate student or other new worker in the field an introduction to the cosmological literature.Comment: 69 pages. Invited review article for Publications of the Astronomical Society of the Pacific. Supplementary references, tables, and more concise PDF file at http://www.physics.drexel.edu/univers

    Orbital effects of a monochromatic plane gravitational wave with ultra-low frequency incident on a gravitationally bound two-body system

    Full text link
    We analytically compute the long-term orbital variations of a test particle orbiting a central body acted upon by an incident monochromatic plane gravitational wave. We assume that the characteristic size of the perturbed two-body system is much smaller than the wavelength of the wave. Moreover, we also suppose that the wave's frequency is much smaller than the particle's orbital one. We make neither a priori assumptions about the direction of the wavevector nor on the orbital geometry of the planet. We find that, while the semi-major axis is left unaffected, the eccentricity, the inclination, the longitude of the ascending node, the longitude of pericenter and the mean anomaly undergo non-vanishing long-term changes. They are not secular trends because of the slow modulation introduced by the tidal matrix coefficients and by the orbital elements themselves. They could be useful to indepenedently constrain the ultra-low frequency waves which may have been indirectly detected in the BICEP2 experiment. Our calculation holds, in general, for any gravitationally bound two-body system whose characteristic frequency is much larger than the frequency of the external wave. It is also valid for a generic perturbation of tidal type with constant coefficients over timescales of the order of the orbital period of the perturbed particle.Comment: LaTex2e, 24 pages, no figures, no tables. Changes suggested by the referees include
    corecore