6 research outputs found
Analysis the brachistochronic motion of a mechanical system with nonlinear nonholonomic constraint
U ovom radu analizira se problem brahistohronog ravnog kretanja mehaniÄkog sistema sa nelinearnom neholonomnom vezom. Neholonomni mehaniÄki sistem je predstavljen sa dva Äapljiginova seÄiva, zanemarljivih dimenzija, koja nameÄu nelinearno ograniÄenje u vidu upravnosti brzina. Razmatra se brahisthrono ravno kretanje pri zadatom poÄetnom i krajnjem položaju uz neizmenjenu vrednost mehaniÄke energije u toku kretanja. Diferencijalne jednaÄine kretanja, u kojima figuriÅ”u reakcije neholonomnih veza i upravljaÄkih sila, dobijene su na osnovu opÅ”tih teorema dinamike. Ovde je to podesnije umesto nekih drugih metoda analitiÄke mehanike primenjenih na neholonomne mehaniÄke sisteme u kojima je neophodno dati naknadno fiziÄko tumaÄenje množitelja veza. Formulisan brahistohroni problem, uz odgovarajuÄi izbor veliÄina stanja je reÅ”en kao, najjednostavniji u ovom sluÄaju, zadatak optimalnog upravljanja primenom Pontryagin-ovog principa maksimuma. Dobijen je odgovarajuÄi dvotaÄkasti graniÄni problem sistema obiÄnih nelinearnih diferencijalnih jednaÄina koji je neophodno numeriÄki reÅ”iti. NumeriÄki postupak za reÅ”avanje dvotaÄkastog graniÄnog problema vrÅ”i se metodom Å”utinga. Na osnovu tako dobijenog brahistohronog kretanja odreÄuju se aktivne upravljaÄke sile, a ujedno i reakcije neholonomnih veza. KoristeÄi Kulonove zakone trenja klizanja, odreÄuje se minimalno potrebna vrednost koeficijenta trenja klizanja, tako da se razmatrani sistem kreÄe u skladu sa neholonomnim zadržavajuÄim vezama.This paper analyzes the problem of brachistochronic planar motion of a mechanical system with nonlinear nonholonomic constraint. The nonholonomic system is represented by two Chaplygin blades of negligible dimensions, which impose nonlinear constraint in the form of perpendicularity of velocities. The brachistrochronic planar motion is considered, with specified initial and terminal positions, at unchanged value of mechanical energy during motion. Differential equations of motion, where the reactions of nonholonomic constraints and control forces figure, are obtained on the basis of general theorems of mechanics. Here, this is more convenient to use than some other methods of analytical mechanics applied to nonholonomic mechanical systems, where a subsequent physical interpretation of the multipliers of constraints is required. The formulated brachistochrone problem, with adequately chosen quantities of state, is solved as simple a task of optimal control as possible in this case by applying the Pontryagin maximum principle. The corresponding two-point boundary value problem of the system of ordinary nonlinear differential equations is obtained, which has to be numerically solved. Numerical procedure for solving the two-point boundary value problem is performed by the method of shooting. On the basis of thus obtained brachistochronic motion, the active control forces, along with the reactions of nonholonomic constraints, are defined. Using the Coulomb friction laws, a minimum required value of the coefficient of sliding friction is defined, so that the considered system is moving in accordance with nonholonomic bilateral constraints
Analysis the brachistochronic motion of a mechanical system with nonlinear nonholonomic constraint
U ovom radu analizira se problem brahistohronog ravnog kretanja mehaniÄkog sistema sa nelinearnom neholonomnom vezom. Neholonomni mehaniÄki sistem je predstavljen sa dva Äapljiginova seÄiva, zanemarljivih dimenzija, koja nameÄu nelinearno ograniÄenje u vidu upravnosti brzina. Razmatra se brahisthrono ravno kretanje pri zadatom poÄetnom i krajnjem položaju uz neizmenjenu vrednost mehaniÄke energije u toku kretanja. Diferencijalne jednaÄine kretanja, u kojima figuriÅ”u reakcije neholonomnih veza i upravljaÄkih sila, dobijene su na osnovu opÅ”tih teorema dinamike. Ovde je to podesnije umesto nekih drugih metoda analitiÄke mehanike primenjenih na neholonomne mehaniÄke sisteme u kojima je neophodno dati naknadno fiziÄko tumaÄenje množitelja veza. Formulisan brahistohroni problem, uz odgovarajuÄi izbor veliÄina stanja je reÅ”en kao, najjednostavniji u ovom sluÄaju, zadatak optimalnog upravljanja primenom Pontryagin-ovog principa maksimuma. Dobijen je odgovarajuÄi dvotaÄkasti graniÄni problem sistema obiÄnih nelinearnih diferencijalnih jednaÄina koji je neophodno numeriÄki reÅ”iti. NumeriÄki postupak za reÅ”avanje dvotaÄkastog graniÄnog problema vrÅ”i se metodom Å”utinga. Na osnovu tako dobijenog brahistohronog kretanja odreÄuju se aktivne upravljaÄke sile, a ujedno i reakcije neholonomnih veza. KoristeÄi Kulonove zakone trenja klizanja, odreÄuje se minimalno potrebna vrednost koeficijenta trenja klizanja, tako da se razmatrani sistem kreÄe u skladu sa neholonomnim zadržavajuÄim vezama.This paper analyzes the problem of brachistochronic planar motion of a mechanical system with nonlinear nonholonomic constraint. The nonholonomic system is represented by two Chaplygin blades of negligible dimensions, which impose nonlinear constraint in the form of perpendicularity of velocities. The brachistrochronic planar motion is considered, with specified initial and terminal positions, at unchanged value of mechanical energy during motion. Differential equations of motion, where the reactions of nonholonomic constraints and control forces figure, are obtained on the basis of general theorems of mechanics. Here, this is more convenient to use than some other methods of analytical mechanics applied to nonholonomic mechanical systems, where a subsequent physical interpretation of the multipliers of constraints is required. The formulated brachistochrone problem, with adequately chosen quantities of state, is solved as simple a task of optimal control as possible in this case by applying the Pontryagin maximum principle. The corresponding two-point boundary value problem of the system of ordinary nonlinear differential equations is obtained, which has to be numerically solved. Numerical procedure for solving the two-point boundary value problem is performed by the method of shooting. On the basis of thus obtained brachistochronic motion, the active control forces, along with the reactions of nonholonomic constraints, are defined. Using the Coulomb friction laws, a minimum required value of the coefficient of sliding friction is defined, so that the considered system is moving in accordance with nonholonomic bilateral constraints
Analysis of minimum required sliding friction coefficient in the brachistochronic motion of a mechanical system with nonlinear nonholonomic constraint
This paper analyzes the problem of brachistochronic planar motion of a mechanical system with nonlinear nonholonomic constraint. The nonholonomic system is represented by two Chaplygin blades [3,4,5,6] of negligible dimensions, which impose nonlinear constraint in the form of perpendicularity of velocities. The brachistrochronic planar motion is considered, with specified initial and terminal positions, at unchanged value of mechanical energy during motion. Differential equations of motion, where the reactions of nonholonomic constraints and control forces figure, are obtained on the basis of general theorems of mechanics [8]. Here, this is more convenient to use than some other methods of analytical mechanics applied to nonholonomic mechanical systems [9], where a subsequent physical interpretation of the multipliers of constraints is required. The formulated brachistochrone problem, with adequately chosen quantities of state, is solved as simple a task of optimal control as possible in this case [6,7] by applying the Pontryagin maximum principle [1]. The corresponding two-point boundary value problem of the system of ordinary nonlinear differential equations is obtained, which has to be numerically solved [2]. Numerical procedure for solving the two-point boundary value problem is performed by the method of shooting. On the basis of thus obtained brachistochronic motion, the active control forces, along with the reactions of nonholonomic constraints, are defined. Using the Coulomb friction laws [8,9], a minimum required value of the coefficient of sliding friction is defined [10], so that the considered system is moving in accordance with nonholonomic bilateral constraints
BRACHISTOCHRONIC MOTION OF A NONLINEAR NONHOLONOMIC MECHANICAL SYSTEM MODEL
The paper analyzes the brachistochronic motion of a nonlinear nonholonomic mechanical system [1] in a horizontal plane, between two specified positions. Differential equations of motion are created based on the general theorems of dynamics. The formulated brachistochrone problem is solved applying the variational calculus. The two-point boundary value problem (TPBVP) of the system of nonlinear differential equations is solved by the shooting method. Special attention is directed to the realization of thus obtained brachistochronic motion
Analysis the brachistochronic motion of a mechanical system with nonlinear nonholonomic constraint
U ovom radu analizira se problem brahistohronog ravnog kretanja mehaniÄkog sistema sa nelinearnom neholonomnom vezom. Neholonomni mehaniÄki sistem je predstavljen sa dva Äapljiginova seÄiva, zanemarljivih dimenzija, koja nameÄu nelinearno ograniÄenje u vidu upravnosti brzina. Razmatra se brahisthrono ravno kretanje pri zadatom poÄetnom i krajnjem položaju uz neizmenjenu vrednost mehaniÄke energije u toku kretanja. Diferencijalne jednaÄine kretanja, u kojima figuriÅ”u reakcije neholonomnih veza i upravljaÄkih sila, dobijene su na osnovu opÅ”tih teorema dinamike. Ovde je to podesnije umesto nekih drugih metoda analitiÄke mehanike primenjenih na neholonomne mehaniÄke sisteme u kojima je neophodno dati naknadno fiziÄko tumaÄenje množitelja veza. Formulisan brahistohroni problem, uz odgovarajuÄi izbor veliÄina stanja je reÅ”en kao, najjednostavniji u ovom sluÄaju, zadatak optimalnog upravljanja primenom Pontryagin-ovog principa maksimuma. Dobijen je odgovarajuÄi dvotaÄkasti graniÄni problem sistema obiÄnih nelinearnih diferencijalnih jednaÄina koji je neophodno numeriÄki reÅ”iti. NumeriÄki postupak za reÅ”avanje dvotaÄkastog graniÄnog problema vrÅ”i se metodom Å”utinga. Na osnovu tako dobijenog brahistohronog kretanja odreÄuju se aktivne upravljaÄke sile, a ujedno i reakcije neholonomnih veza. KoristeÄi Kulonove zakone trenja klizanja, odreÄuje se minimalno potrebna vrednost koeficijenta trenja klizanja, tako da se razmatrani sistem kreÄe u skladu sa neholonomnim zadržavajuÄim vezama.This paper analyzes the problem of brachistochronic planar motion of a mechanical system with nonlinear nonholonomic constraint. The nonholonomic system is represented by two Chaplygin blades of negligible dimensions, which impose nonlinear constraint in the form of perpendicularity of velocities. The brachistrochronic planar motion is considered, with specified initial and terminal positions, at unchanged value of mechanical energy during motion. Differential equations of motion, where the reactions of nonholonomic constraints and control forces figure, are obtained on the basis of general theorems of mechanics. Here, this is more convenient to use than some other methods of analytical mechanics applied to nonholonomic mechanical systems, where a subsequent physical interpretation of the multipliers of constraints is required. The formulated brachistochrone problem, with adequately chosen quantities of state, is solved as simple a task of optimal control as possible in this case by applying the Pontryagin maximum principle. The corresponding two-point boundary value problem of the system of ordinary nonlinear differential equations is obtained, which has to be numerically solved. Numerical procedure for solving the two-point boundary value problem is performed by the method of shooting. On the basis of thus obtained brachistochronic motion, the active control forces, along with the reactions of nonholonomic constraints, are defined. Using the Coulomb friction laws, a minimum required value of the coefficient of sliding friction is defined, so that the considered system is moving in accordance with nonholonomic bilateral constraints