47 research outputs found

    Optical thickness measurement with multi-wavelength THz interferometry

    Get PDF
    AbstractWe report unambiguous thickness measurement with an all-optical THz source. The optical thickness variation of a test target was measured in a Mach–Zehnder interferometer to approximately 0.5% of the illumination wavelength using an optical parametric THz laser. The frequency of the laser was continuously tuneable, enabling a synthetic wavelength to be produced by sequential illumination at discrete frequencies, thus extending the unambiguous measurement range to half the synthetic wavelength. The all-optical source provides some advantages with respect to opto-electronic and electronic sources, particularly measurement speed and resolution

    Characterization of Nano-Mechanical, Surface and Thermal Properties of Hemp Fiber-Reinforced Polycaprolactone (HF/PCL) Biocomposites

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).The quest for sustainable, low-cost and environmental friendly engineering materials has increased the application of natural fiber-reinforced polymer (FRP) composite. This paper experimentally investigates the effects of variable mean hemp fiber (HF) aspect ratios (ARs) of 00 (neat), aspect ratios AR_19, AR_26, AR_30 and AR_38 on nano-mechanical (hardness, modulus, elasticity and plasticity), surface and thermal properties of hemp fiber/polycaprolactone (HF/PCL) biocomposites. These biocomposites were characterized by nanoindentation, contact angle, surface energy, thermogravimetric analysis (TGA), thermal conductivity and differential scanning calorimetry (DSC) techniques. After nanoindentation and thermal conductivity tests, the results obtained evidently show that the HF/PCL sample with aspect ratio (AR_26) recorded optimal values. These values include maximum hardness of approximately 0.107 GPa, elastic modulus of 1.094 GPa, and plastic and elastic works of 1.580 and 1.210 nJ, respectively as well as maximum thermal conductivity of 0.2957 W/m.K, when compared with other samples. Similarly, the optimal sample exhibits highest main degradable temperature and degree of crystallinity of 432 ℃ and 60.6%, respectively. Further results obtained for the total surface energies and contact angles of these samples with glycerol and distilled water are significant for their materials selection, design, manufacturing and various applications.Peer reviewedFinal Published versio

    Hardness of porous nanocrystalline Co-Ni electrodeposits

    Get PDF
    The Hall-Petch relationship can fail when the grain size is below a critical value of tens of nanometres. This occurs particularly for coatings having porous surfaces. In this study, electrodeposited nanostructured Co-Ni coatings from four different nickel electroplating baths having grain sizes in the range of 11-23 nm have been investigated. The finest grain size, approximately 11 nm, was obtained from a coating developed from the nickel sulphate bath. The Co-Ni coatings have a mixed face centred cubic and hexagonal close-packed structures with varying surface morphologies and different porosities. A cluster-pore mixture model has been proposed by considering no contribution from pores to the hardness. As the porosity effect was taken into consideration, the calculated pore-free hardness is in agreement with the ordinary Hall-Petch relationship even when the grain size is reduced to 11 nm for the Co-Ni coatings with 77±2 at% cobalt. The present model was applied to other porous nanocrystalline coatings, and the Hall-Petch relationship was maintained. © 2013 The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht. © KIM and Springer

    On the early stage isothermal oxidation of APS CoNiCrAlY coatings

    Get PDF
    The aim of this study is to analyze the evolution of microstructural and room temperature mechanical properties of air plasma sprayed (APS) CoNiCrAlY coatings before and after early stage high-temperature oxidation. To this purpose, selected samples were isothermally heat treated at 1110 °C for different durations. Phase analysis and oxide scale characterization were performed using x-ray diffraction. Morphological and microstructural features of as-sprayed and oxidized CoNiCrAlY coatings were analyzed by scanning electron microscopy and energy dispersive x-ray spectroscopy. After heat treatment, a duplex oxide scale, composed of an inner ?-Al2O3 layer and an outer spinel-type oxide layer, was observed on coating top-surface. The nanoindentation technique was employed to study the evolution of the mechanical properties. An increase in Young’s modulus and hardness with increasing the aging time was observed, this effect was mainly addressed to the partial densification of coating microstructure

    Mechanical properties of cerium and a cerium-5 wt% lanthanum alloy by nanoindentation and ultrasonic velocity measurements

    No full text
    This paper describes a study of the mechanical properties of cerium (Ce) and a cerium-5 wt% lanthanum (Ce-5 wt% La) alloy using nanoindentation and ultrasonic velocity measurements. The materials were also characterised using optical microscopy, energy dispersive spectroscopy, Raman spectroscopy and X-ray diffraction. Despite their propensity to oxidise rapidly in air, both unalloyed Ce and the Ce-5 wt% La alloy have been studied safely in an open laboratory. The hardness and elastic modulus values of the Ce-5 wt% La alloy were slightly higher than those of unalloyed Ce. However, the hardness values of both materials were significantly higher than other values reported in the literature; this was attributed to the presence of cerium oxide inclusions in the microstructure. Reasonable agreement was found between the elastic moduli obtained by nanoindentation and ultrasonic velocity measurements. The mean elastic modulus measured by nanoindentation was, on average, 14% higher than that obtained from the ultrasonic velocity measurements. This work has demonstrated that, with care, Ce can be handled in an open laboratory and meaningful mechanical property data obtained that appear to be free of the influence of the surface oxide layer

    Mechanisms of argon ion-beam surface modification of polystyrene

    No full text
    The surface characteristics of polymers are important factors determining their interfacial properties and their technological performance. Changes in physical and chemical properties of a polymer film may be induced by subjecting the material to a variety of surface modification techniques, one of which is ion-beam modification. In order to understand the underlying mechanisms X-ray photoelectron spectroscopy (XPS) was used to study the alterations of the polystyrene (PS) surface after Ar-ion treatment under well controlled conditions with low ion doses from 1012 to 1016 cm?2. The ion bombardment leads to surface functionalization, loss of aromaticity, and free radical formation. Induced surface cross-linking and the formation of polar groups raised the surface glass transition temperature of PS fil

    Etching rate and structural modification of polymer films during low energy ion irradiation

    No full text
    Various polymers were sputtered with low energy Ar+ ions of 1 keV in order to determine their etching rate. Hydrocarbons, oxygenated, fluorinated and nitrogen-containing glassy polymers with a broad range of the glass transition temperature (Tg) were chosen. The etching rate was measured using a profilometer, and X-ray photoelectron spectroscopy. At the same time the surface chemical modification, and the surface glass transition temperature were studied. Comparing the sputter rate to the various polymer properties a correlation among the Tg, cross-link density, and sputter rate was found. In addition, the sputter rate as a function of the integral ion fluence proved to exhibit a sharp increase in the initial regime of very low fluence. The results are discussed in terms of the characteristics of the polymer
    corecore