4 research outputs found

    The instantly blocking-based fluorescent immunochromatographic assay for the detection of SARS-CoV-2 neutralizing antibody

    Get PDF
    IntroductionAt present, there is an urgent need for the rapid and accurate detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibodies (NAbs) to evaluate the ability of the human body to resist coronavirus disease 2019 (COVID-19) after infection or vaccination. The current gold standard for neutralizing antibody detection is the conventional virus neutralization test (cVNT), which requires live pathogens and biosafety level-3 (BSL-3) laboratories, making it difficult for this method to meet the requirements of large-scale routine detection. Therefore, this study established a time-resolved fluorescence-blocking lateral flow immunochromatographic assay (TRF-BLFIA) that enables accurate, rapid quantification of NAbs in subjects.MethodsThis assay utilizes the characteristic that SARS-CoV-2 neutralizing antibody can specifically block the binding of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and angiotensin-converting enzyme 2 (ACE2) to rapidly detect the content of neutralizing antibody in COVID-19-infected patients and vaccine recipients.ResultsWhen 356 samples of vaccine recipients were measured, the coincidence rate between this method and cVNT was 88.76%, which was higher than the coincidence rate of 76.97% between cVNT and a conventional chemiluminescence immunoassay detecting overall binding anti-Spike-IgG. More importantly, this assay does not need to be carried out in BSL-2 or 3 laboratories.DiscussionTherefore, this product can detect NAbs in COVID-19 patients and provide a reference for the prognosis and outcome of patients. Simultaneously, it can also be applied to large-scale detection to better meet the needs of neutralizing antibody detection after vaccination, making it an effective tool to evaluate the immunoprotective effect of COVID-19 vaccines

    A Novel Method for Regional Short-Term Forecasting of Water Level

    No full text
    The water level forecasting system represented by the hydrodynamic model relies too much on the input data and the forecast value of the boundary, therefore introducing uncertainty in the prediction results. Tide tables ignore the effect of the residual water level, which is usually significant. Therefore, to solve this problem, a water level forecasting method for the regional short-term (3 h) is proposed in this study. First, a simplified MIKE21 flow model (FM) was established to construct the regional major astronomical tides after subdividing the model residuals into stationary constituents (surplus astronomical tides, simulation deviation) and nonstationary constituents (residual water level). Harmonic analysis (HA) and long short-term memory (LSTM) were adopted to forecast these model residuals, respectively. Finally, according to different spatial background information, the prediction for each composition was corrected by the inverse distance weighting (IDW) algorithm and its improved IDW interpolation algorithm based on signal energy and the spatial distance (IDWSE) from adjacent observation stations to nonmeasured locations. The developed method was applied to Narragansett Bay in Rhode Island. Compared with the assimilation model, the root-mean-square error (RMSE) of the proposed method decreased from 12.3 to 5.0 cm, and R2 increased from 0.932 to 0.988. The possibility of adding meteorological features into the LSTM network was further explored as an extension of the prediction of the residual water level. The results show that the accuracy was limited to a moderate level, which is related to the difficulty presented by using only wind features to completely characterize the regional dynamic energy equilibrium process

    Probing Chemical Bonding and Electronic Structures in ThO- by Anion Photoelectron Imaging and Theoretical Calculations

    No full text
    Because of renewed research on thorium-based molten salt reactors, there is growing demand and interest in enhancing the knowledge of thorium chemistry both experimentally and theoretically. Compared with uranium, thorium has few chemical studies reported up to the present. Here we report the vibrationally resolved photoelectron imaging of the thorium monoxide anion. The electron affinity of ThO is first reported to be 0.707 +/- 0.020 eV. Vibrational frequencies of the ThO molecule and its anion are determined from Franck Condon simulation. Spectroscopic evidence is obtained for the two-electron transition in ThO-, indicating the strong electron correlation among the (7s sigma)(2)(6d delta)(1) electrons in ThO- and the (7s sigma)(2) electrons in ThO. These findings are explained by using quantum-chemical calculations including spin orbit coupling, and the chemical bonding of gaseous ThO molecules is analyzed. The present work will enrich our understanding of bonding capacities with the 6d valence shell
    corecore