4 research outputs found

    Stress-dependent conformational changes of artemin: Effects of heat and oxidant.

    No full text
    Artemin is an abundant thermostable protein in Artemia embryos and it is considered as a highly efficient molecular chaperone against extreme environmental stress conditions. The conformational dynamics of artemin have been suggested to play a critical role in its biological functions. In this study, we have investigated the conformational and functional changes of artemin under heat and oxidative stresses to identify the relationship between its structure and function. The tertiary and quaternary structures of artemin were evaluated by fluorescence measurements, protein cross-linking analysis, and dynamic light scattering. Based on the structural analysis, artemin showed irreversible substantial conformational lability in responses to heat and oxidant, which was mainly mediated through the hydrophobic interactions and dimerization of the chaperone. In addition, the chaperone-like activity of heated and oxidized artemin was examined using lysozyme refolding assay and the results showed that although both factors, i.e. heat and oxidant, at specific levels improved artemin potency, simultaneous incubation with both stressors significantly triggered the chaperone activation. Moreover, the heat-induced dimerization of artemin was found to be the most critical factor for its activation. It was suggested that oxidation presumably acts through stabilizing the dimer structures of artemin through formation of disulfide bridges between the subunits and strengthens its chaperoning efficacy. Accordingly, it is proposed that artemin probably exists in a monomer-oligomer equilibrium in Artemia cysts and environmental stresses and intracellular portion of protein substrates may shift the equilibrium towards the active dimer forms of the chaperone

    afpCOOL: A tool for antifreeze protein prediction

    No full text
    Various cold-adapted organisms produce antifreeze proteins (AFPs), which prevent the freezing of cell fluids by inhibiting the growth of ice crystals. AFPs are currently being recognized in various organisms, living in extremely low temperatures. AFPs have several important applications in increasing freeze tolerance of plants, maintaining the tissue in frozen conditions and producing cold-hardy plants by applying transgenic technology. Substantial differences in the sequence and structure of the AFPs, pose a challenge for researchers to identify these proteins. In this paper, we proposed a novel method to identify AFPs, using supportive vector machine (SVM) by incorporating 4 types of features. Results of the two used benchmark datasets, revealed the strength of the proposed method in AFP prediction. According to the results of an independent test setup, our method outperformed the current state-of-the-art methods. In addition, the comparison results of the discrimination power of different feature types revealed that physicochemical descriptors are the most contributing features in AFP detection. This method has been implemented as a stand-alone tool, named afpCOOL, for various operating systems to predict AFPs with a user friendly graphical interface

    ALS/FTD-associated mutation in cyclin F inhibits ER-Golgi trafficking, inducing ER stress, ERAD and Golgi fragmentation

    No full text
    Abstract Amyotrophic lateral sclerosis (ALS) is a severely debilitating neurodegenerative condition that is part of the same disease spectrum as frontotemporal dementia (FTD). Mutations in the CCNF gene, encoding cyclin F, are present in both sporadic and familial ALS and FTD. However, the pathophysiological mechanisms underlying neurodegeneration remain unclear. Proper functioning of the endoplasmic reticulum (ER) and Golgi apparatus compartments is essential for normal physiological activities and to maintain cellular viability. Here, we demonstrate that ALS/FTD-associated variant cyclin FS621G inhibits secretory protein transport from the ER to Golgi apparatus, by a mechanism involving dysregulation of COPII vesicles at ER exit sites. Consistent with this finding, cyclin FS621G also induces fragmentation of the Golgi apparatus and activates ER stress, ER-associated degradation, and apoptosis. Induction of Golgi fragmentation and ER stress were confirmed with a second ALS/FTD variant cyclin FS195R, and in cortical primary neurons. Hence, this study provides novel insights into pathogenic mechanisms associated with ALS/FTD-variant cyclin F, involving perturbations to both secretory protein trafficking and ER-Golgi homeostasis
    corecore